Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Anasir MI, Ramanathan B, Poh CL
    Viruses, 2020 03 26;12(4).
    PMID: 32225021 DOI: 10.3390/v12040367
    Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
    Matched MeSH terms: Dengue Virus/drug effects*
  2. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    Virol J, 2011;8:560.
    PMID: 22201648 DOI: 10.1186/1743-422X-8-560
    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound.
    Matched MeSH terms: Dengue Virus/drug effects*
  3. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed Hassan S
    Virol J, 2019 02 27;16(1):26.
    PMID: 30813954 DOI: 10.1186/s12985-019-1127-7
    BACKGROUND: Dengue continues to be a major international public health concern. Despite that, there is no clinically approved antiviral for treatment of dengue virus (DENV) infections. In this study, geraniin extracted from the rind of Nephelium lappaceum was shown to inhibit the replication of DENV-2 in both in vitro and in vivo experiments.

    METHODS: The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection.

    RESULTS: Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum.

    CONCLUSIONS: Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.

    Matched MeSH terms: Dengue Virus/drug effects*
  4. Rothan HA, Buckle MJ, Ammar YA, Mohammadjavad P, Shatrah O, Noorsaadah AR, et al.
    Trop Biomed, 2013 Dec;30(4):681-90.
    PMID: 24522138
    Various clinical symptoms are caused by dengue virus ranging from mild fever to severe hemorrhagic fever while there is no successful anti-dengue therapeutics available. Among different strategies towards identifying and developing anti-dengue therapeutics, testing anti-dengue properties of known drugs could represent an efficient strategy for which information of its medical approval, toxicity and side effects is readily available. In this study, we evaluated the antiviral activity of some medical compounds towards dengue NS2B-NS3 protease (DENV2 NS2B-NS3pro) as a target to inhibit dengue virus replication. Mefenamic acid, a non-steroid anti inflammatory drug and doxycycline, a derivative antibiotic of tetracycline both showed significant inhibition potential against DENV2 NS2B-NS3pro Ki values 32 ± 2 μM and 55 ± 5 μM respectively. The effective cytotoxic concentrations of 50% (CC50) against Vero cells were evaluated for mefenamic acid (150 ± 5 μM) and doxycycline (125 ± 4 μM). Concentrations lower than CC50 were used to test the inhibition potential of these compounds against DENV2 replication in Vero cells. The results showed significant reduction in viral load after applying mefenamic acid and doxycyline in concentration dependent manner. Mefenamic acid reduced viral RNA at EC50 of 32 ± 4 μM whilst doxycycline EC50 was 40 ± 3 μM. Mefenamic acid showed higher selectivity against dengue virus replication in vitro compared to doxycycline. These findings underline the need for further experimental and clinical studies on these drugs utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue infection.
    Matched MeSH terms: Dengue Virus/drug effects*
  5. Lee HL, Phong TV, Rohani A
    PMID: 23413698
    This study was conducted to determine the inhibitory effects of ribavirin and hydroxyurea on dengue virus replication in Aedes aegypti mosquitoes. Female Ae. aegypti mosquitoes were infected with dengue-2 virus and fed ribavirin at a dose of 0.3 mg/ml and/or hydroxyurea at a dose of 6 mg/ml via artificial membrane feeding technique. The virus in infected mosquitoes was isolated using C6/36 cell culture. Peroxidase-antiperoxidase (PAP) staining was used to detect dengue-infected C6/36 cells and to quantify the level of infection by determining the presence of infected cells. In mosquitoes treated with ribavirin alone, hydroxyurea alone or both drugs in combination had reductions in dengue infection rates of 87.72, 89.47 and 95.61%, respectively. The mortalities of female Ae. aegypti mosquitoes fed with these drugs were significantly higher than the control. Ribavirin also had an inhibitory effect on the fecundity of female Ae. aegypti mosquitoes.
    Matched MeSH terms: Dengue Virus/drug effects*
  6. Hassandarvish P, Oo A, Jokar A, Zukiwski A, Proniuk S, Abu Bakar S, et al.
    J Antimicrob Chemother, 2017 09 01;72(9):2438-2442.
    PMID: 28666323 DOI: 10.1093/jac/dkx191
    Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes.

    Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains.

    Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins.

    Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.

    Matched MeSH terms: Dengue Virus/drug effects*
  7. Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B
    Sci Rep, 2021 10 27;11(1):21221.
    PMID: 34707245 DOI: 10.1038/s41598-021-98949-y
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in many countries with no effective antiviral drug available currently. This study showed that flavonoids: silymarin and baicalein could inhibit the dengue virus in vitro and were well tolerated in Vero cells with a half-maximum cytotoxic concentration (CC50) of 749.70 µg/mL and 271.03 µg/mL, respectively. Silymarin and baicalein exerted virucidal effects against DENV-3, with a selective index (SI) of 10.87 and 21.34, respectively. Baicalein showed a better inhibition of intracellular DENV-3 progeny with a SI of 7.82 compared to silymarin. Baicalein effectively blocked DENV-3 attachment (95.59%) to the Vero cells, while silymarin prevented the viral entry (72.46%) into the cells, thus reducing viral infectivity. Both flavonoids showed promising antiviral activity against all four dengue serotypes. The in silico molecular docking showed that silymarin could bind to the viral envelope (E) protein with a binding affinity of - 8.5 kcal/mol and form hydrogen bonds with the amino acids GLN120, TRP229, ASN89, and THR223 of the E protein. Overall, this study showed that silymarin and baicalein exhibited potential anti-DENV activity and could serve as promising antiviral agents for further development against dengue infection.
    Matched MeSH terms: Dengue Virus/drug effects*
  8. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, et al.
    Sci Rep, 2014 Jun 26;4:5452.
    PMID: 24965553 DOI: 10.1038/srep05452
    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted.
    Matched MeSH terms: Dengue Virus/drug effects
  9. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
    Matched MeSH terms: Dengue Virus/drug effects*
  10. Rothan HA, Bahrani H, Mohamed Z, Abd Rahman N, Yusof R
    PLoS One, 2014;9(4):e94561.
    PMID: 24722532 DOI: 10.1371/journal.pone.0094561
    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.
    Matched MeSH terms: Dengue Virus/drug effects
  11. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al.
    Parasitol Res, 2017 Feb;116(2):495-502.
    PMID: 27815736 DOI: 10.1007/s00436-016-5310-0
    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 μg ml(-1) (CQ-s) and 87.47 μg ml(-1) (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml(-1). MNP evaluated at 2-8 μg ml(-1) inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.
    Matched MeSH terms: Dengue Virus/drug effects*
  12. Al-Alimi AA, Ali SA, Al-Hassan FM, Idris FM, Teow SY, Mohd Yusoff N
    PLoS Negl Trop Dis, 2014 Mar;8(3):e2711.
    PMID: 24625456 DOI: 10.1371/journal.pntd.0002711
    Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals.
    Matched MeSH terms: Dengue Virus/drug effects
  13. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Dengue Virus/drug effects*
  14. Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y, et al.
    Molecules, 2021 May 23;26(11).
    PMID: 34071102 DOI: 10.3390/molecules26113118
    Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
    Matched MeSH terms: Dengue Virus/drug effects*
  15. Jabanathan SG, Xuan LZ, Ramanathan B
    Methods Mol Biol, 2021;2296:279-302.
    PMID: 33977455 DOI: 10.1007/978-1-0716-1358-0_17
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in over 100 countries. The increase in prevalence would require a long-term measure to control outbreaks. Sanofi Pasteur has licensed the tetravalent dengue vaccine (Dengvaxia) in certain dengue endemic countries. However, the efficacy of the vaccine is limited against certain dengue serotypes and can only be used for individuals from the age from 9 to 45 years old. Over the years, there has been intense research conducted on the development of antivirals against dengue virus (DENV) through either inhibiting the virus replication or targeting the host cell mechanism to block the virus entry. However, no approved antiviral drug against dengue is yet available. In this chapter, we describe the dengue antiviral development workflow including (i) prophylactic, (ii) virucidal, and (iii) postinfection assays that are employed in the antiviral drug screening process against DENV. Further, we demonstrate different methods that can be used to enumerate the reduction in virus foci number including foci-forming unit reduction assay (FFURA), estimation of viral RNA copy number through quantitative real-time PCR, and a high-throughput enzyme linked immunosorbent assay (ELISA)-based quantification of virus particles.
    Matched MeSH terms: Dengue Virus/drug effects
  16. Rothan HA, Abdulrahman AY, Khazali AS, Nor Rashid N, Chong TT, Yusof R
    J. Pept. Sci., 2019 Aug;25(8):e3196.
    PMID: 31290226 DOI: 10.1002/psc.3196
    Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito-borne diseases whereas ZIKV infection occasionally re-emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β-alanyl-l-histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell-based assays were performed to validate the computational results. Mode-of-inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode-of-inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.
    Matched MeSH terms: Dengue Virus/drug effects*
  17. Mukhametov A, Newhouse EI, Aziz NA, Saito JA, Alam M
    J Mol Graph Model, 2014 Jul;52:103-13.
    PMID: 25023665 DOI: 10.1016/j.jmgm.2014.06.008
    The allosteric pocket of the Dengue virus (DENV2) NS2B/NS3 protease, which is proximal to its catalytic triad, represents a promising drug target (Othman et al., 2008). We have explored this binding site through large-scale virtual screening and molecular dynamics simulations followed by calculations of binding free energy. We propose two mechanisms for enzyme inhibition. A ligand may either destabilize electronic density or create steric effects relating to the catalytic triad residues NS3-HIS51, NS3-ASP75, and NS3-SER135. A ligand may also disrupt movement of the C-terminal of NS2B required for inter-conversion between the "open" and "closed" conformations. We found that chalcone and adenosine derivatives had the top potential for drug discovery hits, acting through both inhibitory mechanisms. Studying the molecular mechanisms of these compounds might be helpful in further investigations of the allosteric pocket and its potential for drug discovery.
    Matched MeSH terms: Dengue Virus/drug effects
  18. Othman R, Kiat TS, Khalid N, Yusof R, Newhouse EI, Newhouse JS, et al.
    J Chem Inf Model, 2008 Aug;48(8):1582-91.
    PMID: 18656912 DOI: 10.1021/ci700388k
    A group of flavanones and their chalcones, isolated from Boesenbergia rotunda L., were previously reported to show varying degrees of noncompetitive inhibitory activities toward Dengue virus type 2 (Den2) protease. Results obtained from automated docking studies are in agreement with experimental data in which the ligands were shown to bind to sites other than the active site of the protease. The calculated K(i) values are very small, indicating that the ligands bind quite well to the allosteric binding site. Greater inhibition by pinostrobin, compared to the other compounds, can be explained by H-bonding interaction with the backbone carbonyl of Lys74, which is bonded to Asp75 (one of the catalytic triad residues). In addition, structure-activity relationship analysis yields structural information that may be useful for designing more effective therapeutic drugs against dengue virus infections.
    Matched MeSH terms: Dengue Virus/drug effects*
  19. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA, Yusof R
    J Biomed Biotechnol, 2012;2012:251482.
    PMID: 23093838 DOI: 10.1155/2012/251482
    Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR) peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2) cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein in E. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2) replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC(50) of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P < 0.001) at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P < 0.01) higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.
    Matched MeSH terms: Dengue Virus/drug effects*
  20. Chew MF, Tham HW, Rajik M, Sharifah SH
    J Appl Microbiol, 2015 Oct;119(4):1170-80.
    PMID: 26248692 DOI: 10.1111/jam.12921
    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action.
    Matched MeSH terms: Dengue Virus/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links