Displaying publications 1 - 20 of 198 in total

Abstract:
Sort:
  1. Ahmed HM, Abbott PV
    Aust Dent J, 2012 Jun;57(2):123-31; quiz 248.
    PMID: 22624750 DOI: 10.1111/j.1834-7819.2012.01678.x
    Maxillary molar teeth may have accessory roots. The aim of this paper is to review and discuss the endodontic implications of this anatomical variation. A review of the literature was undertaken to identify studies and reported cases where accessory roots have been recorded in maxillary molar teeth. The results show that although the prevalence of accessory roots in maxillary molar teeth is low, they can exist in all three types of maxillary molar teeth, and they may be located palatally, buccally, mesially or distally. Hence, it is essential that dentists undertaking root canal treatment thoroughly assess all teeth to determine how many roots are present in order to provide the best possible outcome of treatment for the patient.
    Matched MeSH terms: Dental Pulp Cavity/anatomy & histology*; Dental Pulp Cavity/radiography
  2. Abdullah D, Eziana Hussein F, Abd Ghani H
    Iran Endod J, 2017;12(2):257-260.
    PMID: 28512497 DOI: 10.22037/iej.2017.50
    This case report describes the endodontic treatment of an idiopathic perforated internal root resorption. A 24-year-old male Malay patient presented with internal root resorption of two of his anterior teeth. The medical history was non-contributory and he had no history of traumatic injury or orthodontic treatment. Cone-beam computed tomography (CBCT) determined the nature, location and severity of the resorptive lesion. Non-surgical root canal treatment of tooth #22 and combined non-surgical and surgical approach for tooth #11 were carried out using mineral trioxide aggregate (MTA) as the filling material. The clinical and radiographic examination three years after completion of treatment revealed evidences of periapical healing. The appropriate diagnosis and the treatment of internal root resorption allowed good healing of these lesions and maintained the tooth in function for as long as possible.
    Matched MeSH terms: Dental Pulp Cavity
  3. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH
    J Oral Maxillofac Surg, 2013 Oct;71(10):1758.e1-13.
    PMID: 24040948 DOI: 10.1016/j.joms.2013.05.016
    The main aim of the present study was to evaluate the capacity of stem cells from human exfoliated deciduous teeth (SHED) to enhance mandibular distraction osteogenesis (DO) in rabbits.
    Matched MeSH terms: Dental Pulp/cytology*
  4. Oo, Mon Mon Tin, Naing, Lin, Mani, Shani Ann, Abdul Rashid Ismail
    MyJurnal
    Dental caries is an important community dental health problem with limited studies in the mixed dentition stage. The aim of this study was to determine the caries prevalence and treatment needs among 7- 9 year old school children in Kelantan which is situated in North East Malaysia. A retrospective dental record review of fully documented dental records belonging to primary school children attending a paediatric dental clinic was conducted. Dental caries was recorded using dmft index and DMFT index for deciduous teeth and permanent teeth respectively. Three hundred and nineteen dental records of 175 (54.9%) boys’ and 144 (45.1%) girls’ were selected and subjected to a ‘dental record study’. The prevalence of dental caries was 93% (95% CI : 89,97) in primary dentition and 50.5% (95% CI : 42.2, 58.8) in permanent teeth. Mean dmft and DMFT was 6.2(SD 3.39) and 1.04(SD 1.34) respectively. Regarding treatment needs in the primary dentition, 35.4% of teeth needed one surface filling, 34.7% needed extraction, 24.5% needed two or more surfaces filling and 5.6% needed pulp care. In the permanent dentition, 54.7% required sealants and 21.9% required one surface restoration. The caries prevalence and treatment needs were high among this study population in the mixed dentition stage, particularly showing the early involvement of newly erupted permanent teeth. It appears that high caries prevalence in the primary dentition is a risk factor for caries in newly erupted permanent teeth. Oral health promotions programmes are required in the mixed dentition stage and may reduce the risk of caries in permanent dentition.
    Matched MeSH terms: Dental Pulp
  5. Zainal Ariffin SH, Kermani S, Zainol Abidin IZ, Megat Abdul Wahab R, Yamamoto Z, Senafi S, et al.
    Stem Cells Int, 2013;2013:250740.
    PMID: 24348580 DOI: 10.1155/2013/250740
    Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.
    Matched MeSH terms: Dental Pulp
  6. Zainal Ariffin SH, Kermani S, Megat Abdul Wahab R, Senafi S, Zainal Ariffin Z, Abdul Razak M
    ScientificWorldJournal, 2012;2012:827149.
    PMID: 22919354 DOI: 10.1100/2012/827149
    A major challenge in the application of mesenchymal stem cells in cartilage reconstruction is that whether the cells are able to differentiate into fully mature chondrocytes before grafting. The aim of this study was to isolate mouse dental pulp stem cells (DPSC) and differentiate them into chondrocytes. For this investigation, morphological, molecular, and biochemical analyses for differentiated cells were used. To induce the chondrocyte differentiation, DPSC were cultured in chondrogenic medium (Zen-Bio, Inc.). Based on morphological analyses using toluidine blue staining, proteoglycan products appear in DPSC after 21 days of chondrocyte induction. Biochemical analyses in differentiated group showed that alkaline phosphatase activity was significantly increased at day 14 as compared to control (P < 0.05). Cell viability analyses during the differentiation to chondrocytes also showed that these cells were viable during differentiation. However, after the 14th day of differentiation, there was a significant decrease (P < 0.05) in the viability proportion among differentiated cells as compared to the control cells. In RT-PCR molecular analyses, mouse DPSC expressed Cd146 and Cd166 which indicated that these cells belong to mesenchymal stem cells. Coll I and Coll II markers showed high expression after 14 and 21 days, respectively. In conclusion, this study showed that DPSC successfully differentiated into chondrocytes.
    Matched MeSH terms: Dental Pulp/cytology*
  7. Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH
    ScientificWorldJournal, 2014;2014:186508.
    PMID: 25548778 DOI: 10.1155/2014/186508
    Human exfoliated deciduous teeth (SHED) and adipose stem cells (ASC) were suggested as alternative cell choice for cardiac regeneration. However, the true functionability of these cells toward cardiac regeneration is yet to be discovered. Hence, this study was carried out to investigate the innate biological properties of these cell sources toward cardiac regeneration. Both cells exhibited indistinguishable MSCs characteristics. Human stem cell transcription factor arrays were used to screen expression levels in SHED and ASC. Upregulated expression of transcription factor (TF) genes was detected in both sources. An almost equal percentage of >2-fold changes were observed. These TF genes fall under several cardiovascular categories with higher expressions which were observed in growth and development of blood vessel, angiogenesis, and vasculogenesis categories. Further induction into cardiomyocyte revealed ASC to express more significantly cardiomyocyte specific markers compared to SHED during the differentiation course evidenced by morphology and gene expression profile. Despite this, spontaneous cellular beating was not detected in both cell lines. Taken together, our data suggest that despite being defined as MSCs, both ASC and SHED behave differently when they were cultured in a same cardiomyocytes culture condition. Hence, vigorous characterization is needed before introducing any cell for treating targeted diseases.
    Matched MeSH terms: Dental Pulp/cytology*
  8. Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH
    J Cell Mol Med, 2015 Mar;19(3):566-80.
    PMID: 25475098 DOI: 10.1111/jcmm.12381
    MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs.
    Matched MeSH terms: Dental Pulp/cytology*
  9. Xin LZ, Govindasamy V, Musa S, Abu Kasim NH
    Med Hypotheses, 2013 Oct;81(4):704-6.
    PMID: 23932760 DOI: 10.1016/j.mehy.2013.07.032
    Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway.
    Matched MeSH terms: Dental Pulp/cytology*
  10. Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, et al.
    J Endod, 2010 Sep;36(9):1504-15.
    PMID: 20728718 DOI: 10.1016/j.joen.2010.05.006
    Lately, several new stem cell sources and their effective isolation have been reported that claim to have potential for therapeutic applications. However, it is not yet clear which type of stem cell sources are most potent and best for targeted therapy. Lack of understanding of nature of these cells and their lineage-specific propensity might hinder their full potential. Therefore, understanding the gene expression profile that indicates their lineage-specific proclivity is fundamental to the development of successful cell-based therapies.
    Matched MeSH terms: Dental Pulp/cytology*
  11. Gnanasegaran N, Govindasamy V, Abu Kasim NH
    Int Endod J, 2016 Oct;49(10):937-49.
    PMID: 26354006 DOI: 10.1111/iej.12545
    AIM: To investigate whether dental pulp stem cells from carious teeth (DPSCs-CT) can differentiate into functional dopaminergic-like (DAergic) cells and provide an alternative cell source in regenerative medicine.

    METHODOLOGY: Dental pulp stem cells from healthy (DPSCs) and carious teeth (DPSCs-CT) were isolated from young donors. Both cell lines were expanded in identical culture conditions and subsequently differentiated towards DAergic-like cells using pre-defined dopaminergic cocktails. The dopaminergic efficiencies were evaluated both at gene and protein as well as at secretome levels.

    RESULTS: The efficiency of DPSCs-CT to differentiate into DAergic-like cells was not equivalent to that of DPSCs. This was further reflected in both gene and protein generation whereby key neuronal markers such as nestin, NURR1 and beta-III-tubulin were expressed significantly lower as compared to differentiated DPSCs (P 

    Matched MeSH terms: Dental Pulp/cytology*
  12. Gunawardena TNA, Masoudian Z, Rahman MT, Ramasamy TS, Ramanathan A, Abu Kasim NH
    PLoS One, 2019;14(5):e0216003.
    PMID: 31042749 DOI: 10.1371/journal.pone.0216003
    Alopecia is a clinical condition caused by excessive hair loss which may result in baldness, the causes of which still remain elusive. Conditioned media (CM) from stem cells shows promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cultured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and profiled for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF, VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β, TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate hair growth was evaluated based on the paracrine profile and measured dynamics of hair growth under in vitro conditions. The administration of CM media to telogen-staged synchronized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a shorter population doubling time, higher viability and better maintenance of MSC characteristics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all negative hair growth-regulatory factors. The in vitro study confirmed that treatment with STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-CM carries the potential to stimulate hair growth which can be used as a treatment tool for alopecia.
    Matched MeSH terms: Dental Pulp/pathology
  13. Gnanasegaran N, Govindasamy V, Mani V, Abu Kasim NH
    IUBMB Life, 2017 09;69(9):689-699.
    PMID: 28685937 DOI: 10.1002/iub.1655
    In neurodegenerative diseases, such as Alzheimer's and Parkinson's, microglial cell activation is thought to contribute to their degeneration by producing neurotoxic compounds. While dental pulp stem cells (DPSCs) have been regarded as the next possible cell source for cell replacement therapy (CRT), their actual role when exposed in such harsh environment remains elusive. In this study, the immunomodulatory behavior of DPSCs from human subjects was investigated in a coculture system consisting of neuron and microglia which were treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine, which mimics the inflammatory conditions and contribute to degeneration of dopaminergic (DA-ergic) neurons. Assessments were performed on their proliferation, extent of DNA damage, productions of reactive oxygen species (ROS) and nitric oxide (NO), as well as secretion of inflammatory mediators. Notably, DPSCs were shown to attenuate their proliferation, production of ROS, and NO significantly (P 
    Matched MeSH terms: Dental Pulp/immunology; Dental Pulp/transplantation*
  14. Gnanasegaran N, Govindasamy V, Kathirvaloo P, Musa S, Abu Kasim NH
    J Tissue Eng Regen Med, 2018 02;12(2):e881-e893.
    PMID: 28079995 DOI: 10.1002/term.2401
    Parkinson's disease (PD) is characterized by tremors and cognitive issues, and is due to the death of dopaminergic (DA-ergic) neurons in brain circuits that are responsible for producing neurotransmitter dopamine (DA). Currently, cell replacement therapies are underway to improve upon existing therapeutic approaches such as drug treatments and electrical stimulation. Among the widely available sources, dental pulp stem cells (DPSCs) from deciduous teeth have gained popularity because of their neural crest origin and inherent propensity toward neuronal lineage. Despite the various pre-clinical studies conducted, an important factor yet to be elucidated is the influence of growth phases in a typical trans-differentiation process. This study selected DPSCs at three distinct time points with variable growth phase proportions (G0/G1, S and G2/M) for in vitro trans-differentiation into DA-ergic-like cells. Using commercially available PCR arrays, we identified distinct gene profiles pertaining to cell cycles in these phases. The differentiation outcomes were assessed in terms of morphology and gene and protein expression, as well as with functional assays. It was noted that DPSCs with the highest G0/G1 phase were comparatively the best, representing at least a 2-fold up regulation (p 
    Matched MeSH terms: Dental Pulp/cytology*
  15. Chandramouli SR, Vasudevan K, Harikrishnan S, Dutta SK, Janani SJ, Sharma R, et al.
    Zookeys, 2016.
    PMID: 26877687 DOI: 10.3897/zookeys.555.6522
    A new bufonid amphibian, belonging to a new monotypic genus, is described from the Andaman Islands, in the Bay of Bengal, Republic of India, based on unique external morphological and skeletal characters which are compared with those of known Oriental and other relevant bufonid genera. Blythophryne gen. n. is distinguished from other bufonid genera by its small adult size (mean SVL 24.02 mm), the presence of six presacral vertebrae, an absence of coccygeal expansions, presence of an elongated pair of parotoid glands, expanded discs at digit tips and phytotelmonous tadpoles that lack oral denticles. The taxonomic and phylogenetic position of the new taxon (that we named as Blythophryne beryet gen. et sp. n.) was ascertained by comparing its 12S and 16S partial genes with those of Oriental and other relevant bufonid lineages. Resulting molecular phylogeny supports the erection of a novel monotypic genus for this lineage from the Andaman Islands of India.
    Matched MeSH terms: Dental Pulp Calcification
  16. Amanina Fatinah Kamarudin, Najian Ibrahim, Thirumulu Ponnuraj Kannan, Ahmad Aizat Abdul Aziz
    MyJurnal
    Perivitelline fluid, extracted from the fertilized eggs of horseshoe crabs, has been reported to play a
    vital role in supporting embryogenesis as well as cell proliferation. The present study aims to evaluate the effect
    of PVF on the expression of COL1A1 in human dental pulp stem cells (DPSCs). The cells were grouped into two;
    untreated (control) and treated with a single dose of PVF (0.019 mg/ml). Gene expression was quantified for
    COL1A1 on day 1, 3 and 7 using reverse transcriptase PCR. The expression of COL1A1 on day 3 of treated
    group with PVF was the highest though there was a decline of COL1A1 expression on day 7. Mann Whitney test
    was utilized to determine the significance of COL1A1 expression between treated and untreated groups.
    Significant difference in the expression of COL1A1 was observed between the treated and untreated groups on
    day 3 though there was no significance in the expression on day 7. The present study indicates that PVF may
    have the potential to increase cell proliferation in human DPSCs.
    Matched MeSH terms: Dental Pulp
  17. Deng PU, Halim MS, Masudi SM, Al-Shehadat S, Ahmad B
    Eur J Dent, 2018 8 28;12(3):410-416.
    PMID: 30147408 DOI: 10.4103/ejd.ejd_82_18
    Objective: The aim of this study is to investigate the variations in the number of root and canal in the mandibular first permanent molars (MFPMs) teeth in East Coast Malaysian population using cone-beam computed tomography (CBCT).

    Materials and Methods: CBCT images which show MFPMs recorded in HUSM Dental Clinic between January 2015 and June 2016 was obtained and analyzed for their number of roots and canals. A total of 208 CBCT images of MFPMs were collected; 118 patients had unilateral molars and 90 patients had bilateral molars. The following observations were made: (1) root number; (2) number of canals per root; and (3) comparisons of number of roots and canals according to gender, ethnicity, and position.

    Results: The majority of cases of bilateral MFPM had the same number of roots (95.6%, 95% confidence interval [CI]: 89.01%, 98.78%) on both the right and left side and only 4 cases (4.4%, 95% CI: 1.22%, 10.99%) had 3 roots on the right and 2 roots on the left sides. The majority of cases had the same number of canals on both sides (66.7%, 95% CI: 55.95, 76.26%) and 33.3% (95% CI: 23.74%, 44.05%) with unequal number of canals. The occurrence of the number of canals was not independent of the sides of the arch (P < 0.001) and there was statistically significantly greater proportion of cases who had greater number of canals on the right side than the left (P = 0.03). The prevalence of right single-rooted MFPM was very small at 0.3% (n = 1) in a Malay male (95% CI: 0.00, 1.83) and the most prevalent was two roots first molar (88.4%). The number of roots was not associated with sex or ethnic group (P > 0.05). The MFPM with a single root was found to have only one mesial canal. For two rooted MFPM, the most prevalent occurrence was two canals at the mesial and one canal at the distal roots (59%); followed by single canals in each mesial and distal (21%) and double canals per root (18%). Three roots MFPM have either single or double canals in the mesial root and double canals in the distal root.

    Conclusions: The majority of population in the East Coast region of Malaysia has two roots and three root canals in their MFPMs. There was no difference in the number of roots between gender and ethnic and canals between ethnic.

    Matched MeSH terms: Dental Pulp Cavity
  18. Ahmad M
    Endod Dent Traumatol, 1991 Apr;7(2):55-8.
    PMID: 1782894
    The efficacy of two ultrasonic units in shaping curved canals in teeth were compared. Twenty teeth were instrumented using the Cavi-Endo unit at a power setting 1 using the technique recommended by the manufacturer. Another group of 20 teeth received similar treatment but were instrumented with the Enac unit. The time taken to instrument each canal was recorded. The pre- and post-instrumented radiographs of the teeth of x 10 magnification were taken using a microfocal technique. The radiographs were subjected to a subtraction technique to result in composite images of the pre- and post-instrumented shapes. The canal shape and the incidence of elbows were evaluated using various measurements taken from the radiographs. The manner the dentine was removed was similar in both groups. All canals exhibited unequal removal along the canal with more dentine being removed at the coronal end. The Enac group exhibited a higher incidence of elbows which occurred further apically than those in the Cavi-Endo group. There was no significant difference between groups in the following: time of instrumentation, amount of apical and coronal canal enlargement, apical deviation and change in width at the elbow. These findings were no different from those of another study using simulated canals.
    Matched MeSH terms: Dental Pulp Cavity/anatomy & histology; Dental Pulp Cavity/radiography
  19. Mohamed Khazin S, Abdullah D, Liew AKC, Soo E, Ahmad Tarib N
    Aust Endod J, 2022 Apr;48(1):8-19.
    PMID: 34609035 DOI: 10.1111/aej.12567
    This study aimed to determine the incidence and contributing factors to pulpal and periapical disease in crowned vital teeth. Seventy-three pairs of healthy teeth were included and divided into two groups; 'crowned' and 'untreated' groups. The crowned group was prepared for full coverage crown and no treatment was carried out on the untreated group. Both groups were subjected to clinical and radiographic examination to detect endodontic signs and symptoms pre-operatively and one-week after crown cementation. Electric pulp test was also subjected to both groups, pre-operatively, after tooth preparation and before crown cementation. The incidence of pulpal and periapical disease was 6.8% and 1.4%, respectively, after tooth preparation. Factors associated with pulpal and periapical disease were exposed pulp during tooth preparation and pre-operative bone level <35%. Despite the low incidence, the occurrence of pulpal and periapical disease within a short period is noteworthy.
    Matched MeSH terms: Dental Pulp
  20. Luddin N, Ahmed HM
    J Conserv Dent, 2013 Jan;16(1):9-16.
    PMID: 23349569 DOI: 10.4103/0972-0707.105291
    Complete debridement and disinfection of the root canal system are fundamental requirements for successful endodontic treatment. Despite the morphological challenges of the internal root anatomy, root canal irrigants play an important role in the optimization of the root canal preparation, which is essentially a chemo-mechanical procedure. Enterococcus faecalis is one of the most resistant microorganisms that dominants the microbial ecosystem of persistent periradicular lesions in retreatment cases. For that reason, many in vitro and in vivo studies evaluated and compared the antibacterial activity of sodium hypochlorite and chlorhexidine at varying concentrations using different experimental models against this microorganism. However, many controversies with regard to the ideal irrigant and concentration do in fact exist. Hence, this review aims to discuss the antibacterial activity of these two main root canal irrigants against Enterococcus faecalis using the agar diffusion and direct contact methods and the possible modulating factors responsible for inconsistent findings among different studies. In addition, the disinfection potential of both chemical agents on gutta percha and Resilon cones are also discussed. The source of this review was conducted through an electronic literature search using PubMed database from December 1997 until December 2011, which analyze the related laboratory investigations of both irrigants, published in major endodontic journals.
    Matched MeSH terms: Dental Pulp Cavity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links