METHODS: We assessed sCD26/DPP-IV levels, active GLP-1 levels, body mass index (BMI), glucose, insulin, A1c, glucose homeostasis indices, and lipid profiles in 549 Malaysian subjects (including 257 T2DM patients with MetS, 57 T2DM patients without MetS, 71 non-diabetics with MetS, and 164 control subjects without diabetes or metabolic syndrome).
RESULTS: Fasting serum levels of sCD26/DPP-IV were significantly higher in T2DM patients with and without MetS than in normal subjects. Likewise, sCD26/DPP-IV levels were significantly higher in patients with T2DM and MetS than in non-diabetic patients with MetS. However, active GLP-1 levels were significantly lower in T2DM patients both with and without MetS than in normal subjects. In T2DM subjects, sCD26/DPP-IV levels were associated with significantly higher A1c levels, but were significantly lower in patients using monotherapy with metformin. In addition, no significant differences in sCD26/DPP-IV levels were found between diabetic subjects with and without MetS. Furthermore, sCD26/DPP-IV levels were negatively correlated with active GLP-1 levels in T2DM patients both with and without MetS. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-cholesterol (LDL-c) levels.
CONCLUSION: Serum sCD26/DPP-IV levels increased in T2DM subjects with and without MetS. Active GLP-1 levels decreased in T2DM patients both with and without MetS. In addition, sCD26/DPP-IV levels were associated with Alc levels and negatively correlated with active GLP-1 levels. Moreover, metformin monotherapy was associated with reduced sCD26/DPP-IV levels. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-c.
METHODS: The study involved 235 Malaysian subjects who were randomly selected (66 normal weight subjects, 97 overweight, 59 obese subjects, and 13 subjects who were underweight). Serum sDPP4 and active GLP-1 levels were examined by enzyme-linked immunosorbent assay (ELISA). Also, body mass index kg/m(2) (BMI), lipid profiles, insulin and glucose levels were evaluated. Insulin resistance (IR) was estimated via the homeostasis model assessment for insulin resistance (HOMA-IR).
RESULTS: Serum sDPP4 levels were significantly higher in obese subjects compared to normal weight subjects (p=0.034), whereas serum levels of active GLP-1 were lower (p=0.021). In obese subjects, sDPP4 levels correlated negatively with active GLP-1 levels (r(2)=-0.326, p=0.015). Furthermore, linear regression showed that sDPP4 levels were positively associated with insulin resistance (B=82.28, p=0.023) in obese subjects.
CONCLUSION: Elevated serum sDPP4 levels and reduced GLP-1 levels were observed in obese subjects. In addition, sDPP4 levels correlated negatively with active GLP-1 levels but was positively associated with insulin resistance. This finding provides evidence that sDPP4 and GLP-1 may play an important role in the pathogenesis of obesity, suggesting that sDPP4 may be valuable as an early marker for the augmented risk of obesity and insulin resistance.
METHOD: Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 controls. Of these, 71 metabolic syndrome (MetS) subjects were excluded from subsequent analysis. The odds ratios (ORs) and their 95% confidence interval (CIs) were calculated using multiple logistic regression for the association between the SNPs of DPP4 and T2DM. In addition, the serum levels of sDPP-IV were investigated to evaluate the association of the SNPs of DPP4 with the sDPP-IV levels.
RESULTS: Dominant, recessive, and additive genetic models were employed to test the association of DPP4 polymorphisms with T2DM, after adjusting for age, race, gender and BMI. The rs12617656 was associated with T2DM in Malaysian subjects in the recessive genetic model (OR = 1.98, p = 0.006), dominant model (OR = 1.95, p = 0.008), and additive model (OR = 1.63, p = 0.001). This association was more pronounced among Malaysian Indians, recessive (OR = 3.21, p = 0.019), dominant OR = 3.72, p = 0.003) and additive model (OR = 2.29, p = 0.0009). The additive genetic model showed that DPP4 rs4664443 and rs7633162 polymorphisms were associated with T2DM (OR = 1.53, p = 0.039), and (OR = 1.42, p = 0.020), respectively. In addition, the rs4664443 G>A polymorphism was associated with increased sDPP-IV levels (p = 0.042) in T2DM subjects.
CONCLUSIONS: DPP4 polymorphisms were associated with T2DM in Malaysian subjects, and linked to variations in sDPP-IV levels. In addition, these associations were more pronounced among Malaysian Indian subjects.
AIM AND OBJECTIVES: The aim of this study was to evaluate the clinical significance of serum CD26 in patients with acute lymphoblastic leukaemia patients in the post remission induction phase, as well as the relationship between CD26 activity and the oxidative stress status.
MATERIALS AND METHODS: CD26, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI), in addition to activity of related enzymes myeloperoxidase, glutathione- s-transferase and xanthine oxidase, were analysed in sixty children with acute lymphoblastic leukaemia in the post remission induction phase.
RESULTS: The study showed significant elevation in CD26, TOS and OSI levels in patients with acute lymphoblastic leukaemia in the post remission induction phase in comparison to healthy control samples. In contrast, myeloperoxidase, glutathione-s-transferase and xanthine oxidase activities were decreased significantly. A significant correlation between CD26 concentration and some oxidative stress parameters was evident in ALL patients.
CONCLUSIONS: Serum levels of CD26 appear to be useful as a new biomarker of oxidative stress in children with acute lymphoblastic leukaemia in the post remission induction phase, and levels of antioxidants must be regularly estimated during the treatment of children with ALL.
METHODS: All English-language medical literature published from inception till October 2014 which met the inclusion criteria were reviewed and analyzed.
RESULTS: A total of nine papers were included, reviewed and analyzed. The total sample size was 4276 patients. All studies used either of the two DPP4 inhibitors - Vildagliptin or Sitagliptin, vs sulphonylurea or meglitinides. Patients receiving DPP4 inhibitors were less likely to develop symptomatic hypoglycemia (risk ratio 0.46; 95% CI, 0.30-0.70), confirmed hypoglycemia (risk ratio 0.36; 95% CI, 0.21-0.64) and severe hypoglycemia (risk ratio 0.22; 95% CI, 0.10-0.53) compared with patients on sulphonylureas. There was no statistically significant difference in HbA1C changes comparing Vildagliptin and sulphonylurea.
CONCLUSION: DPP4 inhibitor is a safer alternative to sulphonylurea in Muslim patients with type 2 diabetes mellitus who fast during the month of Ramadan as it is associated with lower risk of symptomatic, confirmed and severe hypoglycemia, with efficacy comparable to sulphonylurea.
OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.
MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.
RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).
DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.