Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Lee YF, Merican H, Nallusamy R, Ong LM, Mohamed Nazir P, Hamzah HB, et al.
    Am J Infect Control, 2016 06 01;44(6):e95-7.
    PMID: 26897697 DOI: 10.1016/j.ajic.2015.12.031
    Hand hygiene auditing is mandatory for all Malaysian public hospitals; nonetheless, the burden of auditing is impacting the support and sustainability of the program. We report an alternative method to routinely measure hand hygiene compliance with the aim to test whether alcohol-based handrub purchase data could be used as a proxy for usage because human auditing has decreased validity and reliability inherent in the methodology.
    Matched MeSH terms: Disinfectants*
  2. Lian, C.B., Ngeow, W.C.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    Formalin is a clear solution of 37% formaldehyde in water. It is used in dentistry as a disinfectant, antiseptic and mainly as tissue fixative for preserving biologic specimens for histopathologic examination. The human knowledge on systemic formaldehyde intoxication is inadequate as only few cases of formalin ingestion have been reported. This paper presents a brief communication of the adverse effect of formalin to the human tissue.
    Matched MeSH terms: Disinfectants
  3. Faller EM, Bin Miskam N, Pereira A
    Ann Glob Health, 2018 08 31;84(3):338-341.
    PMID: 30835385 DOI: 10.29024/aogh.2316
    BACKGROUND AND PURPOSE: Healthcare workers are prone to occupational hazards. The study aims to identify the occupational health hazards among healthcare workers in the Philippines and its essential relevant developmental framework. This article evolved on the responses of participants on how they can improve strategies and barriers for healthcare workers to comply with Occupational Health and Safety (OSH).

    METHODS: A qualitative study design in which 15 healthcare workers from nurses (4), pharmacists (3), medical technologies (4) and medical doctors (4) participated: two focus group of three to four participants each and eight in-depth interviews. The thematic sessions were identified, including occupational health and safety policy implementations, hazards experiences, barriers, and strategies for quality improvement for OSH. Focus groups and interviews using transcript-based analysis were identified relating to emerging themes on the challenges they had experienced while accessing provisions of OSH in their workplace.

    RESULTS: Majority of the participants revealed the existence of policy on Occupational Health and Safety (provisions, guidelines and regulations on OHS from the government) and mentioned that there were limited OHS officers to supervise the healthcare workers in their workplace. Some have limited accessibility to the requirements of the implementation of OHS (free facemasks, gloves, disinfectants, machines, OSH staff, etc.) among healthcare workers, while the workload of the staff in the implementation of OHS in the workplace gradually increased. The results indicated that the respondents were knowledgeable in the implementation of OHS in the workplace, and that there was no existing ASEAN framework on the protection and promotion of the rights of healthcare workers in their workplace. Facilities need to improve health assessment, and to ensure constant evaluation of the existing laws for healthcare workers (quality assurance of existing policies) in their working areas. Direct access to OSH officers, occupational hazards education, emergency contact etc. must be improved. Adherence must be strengthened to fully comply with the OHS standards.

    CONCLUSION: The researchers inferred that issues and concerns regarding compliance on provisions of occupational health and safety among health care workers must be properly addressed through immediate monitoring and reevaluation of personnel in terms of their knowledge and practices in OHS. Barriers and challenges have been identified in the study that can lead to improved compliance among healthcare workers in regards to OHS.

    Matched MeSH terms: Disinfectants
  4. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
    Matched MeSH terms: Disinfectants/analysis*
  5. Pui WC, Chieng TH, Siow SL, Nik Abdullah NA, Sagap I
    Asian Pac J Cancer Prev, 2020 Oct 01;21(10):2927-2934.
    PMID: 33112550 DOI: 10.31557/APJCP.2020.21.10.2927
    BACKGROUND: Various methods have been used for treatment of hemorrhagic radiation proctitis (HRP) with variable results. Currently, the preferred treatment is formalin application or endoscopic therapy with argon plasma coagulation. Recently, a novel therapy with colonic water irrigation and oral antibiotics showed promising results and more effective compared to 4% formalin application for HRP. The study objective is to compare the effect of water irrigation and oral antibiotics versus 4% formalin application in improving per rectal bleeding due to HRP and related symptoms such as diarrhoea, tenesmus, stool frequency, stool urgency and endoscopic findings.

    METHODS: We conducted a study on 34 patients with HRP and randomly assigned the patients to two treatment arm groups (n=17). The formalin group underwent 4% formalin dab and another session 4 weeks later. The irrigation group self-administered daily rectal irrigation at home for 8 weeks and consumed oral metronidazole and ciprofloxacin during the first one week. We measured the patients' symptoms and endoscopic findings before and after total of 8 weeks of treatment in both groups.

    RESULTS: Our study showed that HRP patients had reduced per rectal bleeding (p = 0.003) in formalin group, whereas irrigation group showed reduced diarrhoea (p=0.018) and tenesmus (p=0.024) symptoms. The comparison between the two treatment arms showed that irrigation technique was better than formalin technique for tenesmus (p=0.043) symptom only.

    CONCLUSION: This novel treatment showed benefit in treating HRP. It could be a new treatment option which is safe and conveniently self-administered at home or used as a combination with other therapies to improve the treatment outcome for HRP.
    .

    Matched MeSH terms: Disinfectants/therapeutic use
  6. Ismail Hossain M, El-Harbawi M, Noaman YA, Bustam MA, Alitheen NB, Affandi NA, et al.
    Chemosphere, 2011 Jun;84(1):101-4.
    PMID: 21421256 DOI: 10.1016/j.chemosphere.2011.02.048
    Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens.
    Matched MeSH terms: Disinfectants/chemical synthesis; Disinfectants/toxicity
  7. Makky EA, Park GS, Choi IW, Cho SI, Kim H
    Chemosphere, 2011 May;83(9):1228-33.
    PMID: 21489600 DOI: 10.1016/j.chemosphere.2011.03.030
    The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (C¯T) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with C¯T of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores.
    Matched MeSH terms: Disinfectants/toxicity*
  8. Daood U, Burrow MF, Yiu CKY
    Clin Oral Investig, 2020 Feb;24(2):649-661.
    PMID: 31115692 DOI: 10.1007/s00784-019-02928-7
    OBJECTIVE: Evaluate effect of quaternary ammonium silane (QAS) cavity disinfectant on cariogenic biofilm.

    MATERIALS AND METHODS: Single- (Streptococcus mutans or Lactobacillus acidophilus), dual- (Streptococcus mutans/Lactobacillus Acidophilus), and multi-species (Streptococcus mutans, Actinomyces naeslundii, and Streptococcus sanguis) biofilms were grown on acid-etched dentine discs. Biofilms were incubated (120 min/37 °C) and allowed to grow for 3 days anaerobically. Discs (no treatment) served as control (group 1). Groups II, III, IV, and V were then treated with 2% chlorhexidine, and 2%, 5%, and 10% QAS (20 s). Discs were returned to well plates with 300 μL of bacterial suspension and placed in anaerobic incubator at 37 °C and biofilms redeveloped for 4 days. Confocal microscopy, Raman, CFU, and MTT assay were performed.

    RESULTS: Raman peaks show shifts at 1450 cm-1, 1453 cm-1, 1457 cm-1, 1460 cm-1, and 1462 cm-1 for control, 2% CHX, 2%, 5%, and 10% QAS groups in multi-species biofilms. There was reduction of 484 cm-1 band in 10% QAS group. CLSM revealed densely clustered green colonies in control group and red confluent QAS-treated biofilms with significantly lower log CFU for single/dual species. Metabolic activities of Streptococcus mutans and Lactobacillus acidophilus decreased with increasing QAS exposure time.

    CONCLUSION: Quaternary ammonium silanes possess antimicrobial activities and inhibit growth of cariogenic biofilms.

    CLINICAL SIGNIFICANCE: Available data demonstrated use of QAS as potential antibacterial cavity disinfectant in adhesive dentistry. Experimental QAS can effectively eliminate caries-forming bacteria, when used inside a prepared cavity, and can definitely overcome problems associated with present available cavity disinfectants.

    Matched MeSH terms: Disinfectants*
  9. Lee CK, Chua YP, Saw A
    Clin Orthop Relat Res, 2012 Feb;470(2):610-5.
    PMID: 21842299 DOI: 10.1007/s11999-011-1990-z
    Pin site infection is a common problem in external fixation. Plain gauze wetted with normal saline is commonly used for a pin site dressing owing to the simplicity and low cost. Evidence to support adding an antimicrobial agent in the dressing material is lacking.
    Matched MeSH terms: Disinfectants/administration & dosage*
  10. Goh CF, Ming LC, Wong LC
    Clin Dermatol, 2020 10 02;39(2):314-322.
    PMID: 34272029 DOI: 10.1016/j.clindermatol.2020.09.005
    Infection preventive practice of using disinfectants against SARS-CoV-2 has become the new normal due to the COVID-19 pandemic. Although disinfectants may not be applied directly to the human body, it remains at high risk of exposure including close skin contact on disinfected surfaces or during handling. This dermal contact, on a regular basis, can induce hazardous skin reactions like irritation, inflammation, and burning in severe conditions. Disinfectants are germicide chemicals that can penetrate the skin and create skin reactions that are usually regarded as irritant and allergic contact dermatitis. More importantly, disinfectants can react with skin components (proteins and lipids) to facilitate their skin penetration and disrupt the skin barrier function. Whereas the antimicrobial actions of disinfectants are well understood, much less is known regarding their dermatologic reactions, including but not limited to irritation and hypersensitivity. We reviewed the skin reactions created by those disinfectants against SARS-CoV-2 approved by the European Chemical Agency and the US Environmental Protection Agency.
    Matched MeSH terms: Disinfectants/adverse effects*
  11. Daood U, Yiu CKY
    Dent Mater, 2019 02;35(2):206-216.
    PMID: 30509480 DOI: 10.1016/j.dental.2018.11.018
    OBJECTIVE: To evaluate the transdentinal cytotoxicity and macrophage phenotype response to a novel quaternary ammonium silane (QAS) cavity disinfectant.

    METHODS: NIH 3T3 mouse fibroblasts were cultured in Dulbecco's Modified Eagle's Medium and incubated for 3 days. The cells (3×104) were seeded on the pulpal side of dentine discs and the occlusal side of the discs were treated with different cavity disinfectants: Group 1: de-ionized water (control); Group 2: 2% chlorhexidine (CHX); Group 3: 2% QAS; Group 4: 5% QAS, and Group 5: 10% QAS. Cell morphology of NIH 3T3 cells was examined using scanning electron microscopy (SEM) and cell viability was assessed using Trypan blue assay. The eluates were collected and applied on cells seeded in 24-well plates. The total protein production, alkaline phosphatase activity and deposition of mineralized nodules were evaluated after 7 and 14 days. Immunofluorescence staining was performed on the samples with primary antibodies of CD68+, CD80+, and CD163+ assessing the macrophage M1/M2 phenotypes. The macrophages were imaged using a confocal scanning light microscope with an excitation wavelength of 488nm.

    RESULTS: No significant difference in cell viability (p<0.0001), total protein production (p<0.01) and mineralized nodule production (p<0.05) was found between 2% QAS and the control, which was significantly higher than 2% CHX, 5% and 10% QAS after 14 days. Alkaline phosphatase production of 2% QAS was significantly lower than the control (p<0.001), but higher than 2% CHX at 14 days. The M1/M2 macrophage ratio was also significantly lower in the 2% and 10% QAS groups (p<0.05) compared to the control and 2% CHX groups.

    SIGNIFICANCE: The 2% QAS cavity disinfectant does not have cytotoxic effects on 3T3 NIH mouse fibroblast cells and the predominance of the anti-inflammatory phenotype after its application may stimulate healing and tissue repair.

    Matched MeSH terms: Disinfectants*
  12. Khalit WNAW, Tay KS
    Ecotoxicol Environ Saf, 2017 Nov;145:214-220.
    PMID: 28738204 DOI: 10.1016/j.ecoenv.2017.07.020
    Unmetabolized pharmaceuticals often enter the water treatment plants and exposed to various treatment processes. Among these water treatment processes, disinfection is a process which involves the application of chemical oxidation to remove pathogen. Untreated pharmaceuticals from primary and secondary treatment have the potential to be exposed to the chemical oxidation process during disinfection. This study investigated the kinetics and mechanism of the degradation of sotalol during chlorination process. Chlorination with hypochlorous acid (HOCl) as main reactive oxidant has been known as one of the most commonly used disinfection methods. The second order rate constant for the reaction between sotalol and free available chlorine (FAC) was found to decrease from 60.1 to 39.1M-1min-1 when the pH was increased from 6 to 8. This result was mainly attributed by the decreased of HOCl concentration with increasing pH. In the real water samples, the presence of the higher amount of organic content was found to reduce the efficiency of chlorination in the removal of sotalol. This result showed that sotalol competes with natural organic matter to react with HOCl during chlorination. After 24h of FAC exposure, sotalol was found to produce three stable transformation by-products. These by-products are mainly chlorinated compounds. According to the acute and chronic toxicity calculated using ECOSAR computer program, the transformation by-products are more harmful than sotalol.
    Matched MeSH terms: Disinfectants/chemistry*
  13. Jeyaseelan A, Murugesan K, Thayanithi S, Palanisamy SB
    Environ Res, 2024 Mar 15;245:118020.
    PMID: 38151149 DOI: 10.1016/j.envres.2023.118020
    Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.
    Matched MeSH terms: Disinfectants*
  14. Ali HR, Ariffin MM, Omar TFT, Ghazali A, Sheikh MA, Shazili NAM, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(37):52247-52257.
    PMID: 34002317 DOI: 10.1007/s11356-021-14424-1
    Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.
    Matched MeSH terms: Disinfectants*
  15. Tan SM, Lee SM, Dykes GA
    Foodborne Pathog Dis, 2015 Mar;12(3):183-9.
    PMID: 25562466 DOI: 10.1089/fpd.2014.1853
    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.
    Matched MeSH terms: Disinfectants/pharmacology*
  16. Shirazinejad A, Ismail N, Bhat R
    Foodborne Pathog Dis, 2010 Dec;7(12):1531-6.
    PMID: 21034165 DOI: 10.1089/fpd.2010.0616
    Fresh raw shrimps were dipped for 10, 20, and 30 min at room temperature (25°C ± 1°C) in lactic acid (LA; 1.5%, 3.0%, v/v) to evaluate their antipathogenic effects against Vibrio cholerae, Vibrio parahaemolyticus, Salmonella entreitidis, and Escherichia coli O157:H7 inoculated at a level of 10(5) CFU/g. Significant reductions in the population of all these pathogenic bacteria were recorded after dipping treatments, which were correlated to the corresponding LA concentrations and treatment time. With respect to the microbial quality, 3.0% LA treatment for 10 min was acceptable in reducing the pathogenic bacteria. Additionally, sensory evaluation results revealed a 10-min dip in 3.0% LA to be more acceptable organoleptically compared with 20 and 30 min of treatments. Results of the present study are envisaged to be useful for commercial applications for effective decontamination of shrimp.
    Matched MeSH terms: Disinfectants/pharmacology*
  17. Afsah-Hejri, L., Rukayadi, Y., Fouladynezhad, N., Son, R., Nakaguchi, Y., Nishibuchi, M.
    MyJurnal
    Listeria monocytogenes (L. monocytogenes) is a gram positive food-borne pathogen that is able to form biofilm on food factory surfaces. Formation of biofilm makes the bacteria much more resistance to environmental stresses such as disinfectant. The extracellular polymeric matrix (biofilm structure) which is mostly comprised of sticky extracellular polysaccharides (EPS) and proteins can protect bacteria in a harsh condition. The efficiency of four disinfectants on removing L. monocytogenes biofilm was investigated. Five concentration levels (100, 50, 25, 12.5, and 6.25%) of disinfectants were tested. In the microtitre assay, the optical density at 595 nm CV-OD595 value, was used to measure the amount of remained biofilm after 24 h. Results showed that disinfectants did not have significant effect on removing L. monocytogenes biofilm. Formation of L. monocytogenes biofilm significantly decreased the efficiency of disinfectants. Biofilm produced by strain number 9 showed higher resistance to disinfectant. Low concentrations (
    Matched MeSH terms: Disinfectants
  18. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK
    Int J Biol Macromol, 2019 Apr 01;126:569-577.
    PMID: 30584947 DOI: 10.1016/j.ijbiomac.2018.12.193
    The electrospinning PAN nanofiber membrane (P-CN) was hydrolysed to convert carboxylic groups as reaction sites and covalently graft chitosan molecule. The chitosan derivatives with quaternary ammonium groups exerted greater efficiency against bacteria as compared to pure chitosan. Hence, the chitosan modified membrane (P-CS), can be functionalized with quaternary amine (i.e., glycidyl trimethyl ammonium chloride, GTMAC) to form quaternized chitosan nanofiber membrane (designated as P-HTCC) under various conditions (acidic, neutral, and alkaline). N-quaternized derivatives of chitosan modified membrane (N-HTCC) showed 72% and 60% degree of quaternization (DQ) under acidic and neutral conditions, respectively. Under alkaline condition, additional quaternization of N, O-HTCC via its amino and hydroxyl groups, has improved up to 90% DQ of the chitosan. The antibacterial activity of the quaternized chitosan modified membrane prepared from acetic acid medium is stronger than that prepared from water and alkaline media. Also, antibacterial activity of quaternized chitosan is stronger than chitosan modified membrane against E. coli. The microbiological assessments showed that the water-stable P-HTCC nanofiber membrane under modification in acidic medium exerted antibacterial activity up to 99.95% against E. coli. Therefore, the P-HTCC membrane exhibited high potential to be integrated into microfiltration membrane to effectively disinfect E. coli.
    Matched MeSH terms: Disinfectants
  19. Jing JLJ, Pei Yi T, Bose RJC, McCarthy JR, Tharmalingam N, Madheswaran T
    PMID: 32403261 DOI: 10.3390/ijerph17093326
    Hand hygiene is of utmost importance as it may be contaminated easily from direct contact with airborne microorganism droplets from coughs and sneezes. Particularly in situations like pandemic outbreak, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. It can be achieved with contact isolation and strict infection control tool like maintaining good hand hygiene in hospital settings and in public. The success of the hand sanitization solely depends on the use of effective hand disinfecting agents formulated in various types and forms such as antimicrobial soaps, water-based or alcohol-based hand sanitizer, with the latter being widely used in hospital settings. To date, most of the effective hand sanitizer products are alcohol-based formulations containing 62%-95% of alcohol as it can denature the proteins of microbes and the ability to inactivate viruses. This systematic review correlated with the data available in Pubmed, and it will investigate the range of available hand sanitizers and their effectiveness as well as the formulation aspects, adverse effects, and recommendations to enhance the formulation efficiency and safety. Further, this article highlights the efficacy of alcohol-based hand sanitizer against the coronavirus.
    Matched MeSH terms: Disinfectants
  20. Sarjit A, Dykes GA
    Int J Food Microbiol, 2015 Jun 16;203:63-9.
    PMID: 25791251 DOI: 10.1016/j.ijfoodmicro.2015.02.026
    Little work has been reported on the use of commercial antimicrobials against foodborne pathogens on duck meat. We investigated the effectiveness of trisodium phosphate (TSP) and sodium hypochlorite (SH) as antimicrobial treatments against Campylobacter and Salmonella on duck meat under simulated commercial water chilling conditions. The results were compared to the same treatments on well-studied chicken meat. A six strain Campylobacter or Salmonella cocktail was inoculated (5 ml) at two dilution levels (10(4) and 10(8) cfu/ml) onto 25 g duck or chicken meat with skin and allowed to attach for 10 min. The meat was exposed to three concentrations of pH adjusted TSP (8, 10 and 12% (w/v), pH 11.5) or SH (40, 50 and 60 ppm, pH 5.5) in 30 ml water under simulated spin chiller conditions (4 °C, agitation) for 10 min. In a parallel experiment the meat was placed in the antimicrobial treatments before inoculation and bacterial cocktails were added to the meat after the antimicrobial solution was removed while all other parameters were maintained. Untreated controls and controls using water were included in all experiments. Bacterial numbers were determined on Campylobacter blood-free selective agar and Mueller Hinton agar or xylose deoxycholate agar and tryptone soya agar using the thin agar layer method for Campylobacter and Salmonella, respectively. All TSP concentrations significantly (p<0.05) reduced numbers of Campylobacter (~1.2-6.4 log cfu/cm(2)) and Salmonella (~0.4-6.6 log cfu/cm(2)) on both duck and chicken meat. On duck meat, numbers of Campylobacter were less than the limit of detection at higher concentrations of TSP and numbers of Salmonella were less than the limit of detection at all concentrations of TSP except one. On chicken meat, numbers of Campylobacter and Salmonella were less than the limit of detection only at the lower inoculum level and higher TSP concentrations. By contrast only some of the concentrations of SH significantly (p<0.05) reduced numbers of Campylobacter and Salmonella (~0.2-1.5 log cfu/cm(2)) on both duck and chicken meats. None of the SH treatments resulted in numbers of either pathogen being less than limit of detection. Results indicate that chicken meat has the ability to effectively protect Campylobacter and Salmonella against the impact of trisodium phosphate and sodium hypochlorite while duck meat does not. This study suggests that trisodium phosphate has a strong potential for application in a commercial poultry processing to reduce Campylobacter and Salmonella specifically on duck meat.
    Matched MeSH terms: Disinfectants/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links