Displaying publications 1 - 20 of 124 in total

Abstract:
Sort:
  1. Wong CF, Salleh AB, Basri M, Abd Rahman RN
    Biotechnol Appl Biochem, 2010 Sep;57(1):1-7.
    PMID: 20726840 DOI: 10.1042/BA20100224
    The structural gene of elastase strain K (elastase from Pseudomonas aeruginosa strain K), namely HindIII1500PstI, was successfully sequenced to contain 1497 bp. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consists of 301 amino acids, with a molecular mass of 33.1 kDa, and contains a conserved motif HEXXH, zinc ligands and residues involved in the catalysis of elastase strain K. The structural gene was successfully cloned to a shuttle vector, pUCP19, and transformed into Escherichia coli strains TOP10, KRX, JM109 and Tuner™ pLacI as well as P. aeruginosa strains PA01 (A.T.C.C. 47085) and S5, with detection of significant protein expression. Overexpression was detected from transformants KRX/pUCP19/HindIII1500PstI of E. coli and PA01/pUCP19/HindIII1500PstI of P. aeruginosa, with increases in elastolytic activity to 13.83- and 5.04-fold respectively relative to their controls. In addition, recombinant elastase strain K showed considerable stability towards numerous organic solvents such as methanol, ethanol, acetone, toluene, undecan-1-ol and n-dodecane, which typically pose a detrimental effect on enzymes; our finding provides further information to support the potential application of the enzyme in synthetic industries, particularly peptide synthesis.
    Matched MeSH terms: Enzyme Stability
  2. Easa M.N., Yusof, F., Abd. Halim, A.
    MyJurnal
    Many studies have been done on various species of insects to investigate their potential use in industries. This is because insects have high protein content which could be further manipulated. Due to its eating habit, Zophobas morio larvae, also known as super mealworm has been shown to have high amylase activity. In this study, amylase from super mealworm has been immobilized via Cross-Linked Enzyme Aggregates (CLEA) technique and its kinetic performance, evaluated. CLEA is one of the best immobilization method with respect to enzyme stability and reusability. Kinetic performance of both free and CLEA-amylase were evaluated based on the Michaelis-Menten model. Results obtained based on Hanes-Woolf, LineweaverBurk, Eadie-Hofstee and Hyperbolic Regression plots showed that the kinetic parameters, Vmax and KM, changed upon immobilization. For CLEA-amylase, Hanes-Woolf plot showed the bestfitted model based on R2 with Vmax= 1.068 mM/min and KM= 0.182 mM, however, LineweaverBurk plot was used to obtain the kinetic parameters for free amylase, with Vmax and KM of 17.230 mM/min and 2.470 mM, respectively. Thus it is observed that upon immobilization, Vmax for amylase dropped appreciably, however, much lower substrate concentration is needed to saturate the enzymatic sites to reach its maximum catalytic efficiency. The result from this study might open the new path in discovering the potential use of insects in industrial applications, for example, making use of the recovered enzymes in the detergent industry.
    Matched MeSH terms: Enzyme Stability
  3. Abedi Karjiban R, Lim WZ, Basri M, Abdul Rahman MB
    Protein J, 2014 Aug;33(4):369-76.
    PMID: 24871480 DOI: 10.1007/s10930-014-9568-8
    Lipases are known for their versatility in addition to their ability to digest fat. They can be used for the formulation of detergents, as food ingredients and as biocatalysts in many industrial processes. Because conventional enzymes are frangible at high temperatures, the replacement of conventional chemical routes with biochemical processes that utilize thermostable lipases is vital in the industrial setting. Recent theoretical studies on enzymes have provided numerous fundamental insights into the structures, folding mechanisms and stabilities of these proteins. The studies corroborate the experimental results and provide additional information regarding the structures that were determined experimentally. In this paper, we review the computational studies that have described how temperature affects the structure and dynamics of thermoenzymes, including the thermoalkalophilic L1 lipase derived from Bacillus stearothermophilus. We will also discuss the potential of using pressure for the analysis of the stability of thermoenzymes because high pressure is also important for the processing and preservation of foods.
    Matched MeSH terms: Enzyme Stability*
  4. Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N
    J Microbiol Biotechnol, 2024 Feb 28;34(2):436-456.
    PMID: 38044750 DOI: 10.4014/jmb.2306.06050
    Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
    Matched MeSH terms: Enzyme Stability
  5. Abedi Karjiban R, Abdul Rahman MB, Basri M, Salleh AB, Jacobs D, Abdul Wahab H
    Protein J, 2009 Jan;28(1):14-23.
    PMID: 19130194 DOI: 10.1007/s10930-008-9159-7
    Molecular Dynamics (MD) simulations have been used to understand how protein structure, dynamics, and flexibility are affected by adaptation to high temperature for several years. We report here the results of the high temperature MD simulations of Bacillus stearothermophilus L1 (L1 lipase). We found that the N-terminal moiety of the enzyme showed a high flexibility and dynamics during high temperature simulations which preceded and followed by clear structural changes in two specific regions; the small domain and the main catalytic domain or core domain of the enzyme. These two domains interact with each other through a Zn(2+)-binding coordination with Asp-61 and Asp-238 from the core domain and His-81 and His-87 from the small domain. Interestingly, the His-81 and His-87 were among the highly fluctuated and mobile residues at high temperatures. The results appear to suggest that tight interactions of Zn(2+)-binding coordination with specified residues became weak at high temperature which suggests the contribution of this region to the thermostability of the enzyme.
    Matched MeSH terms: Enzyme Stability
  6. Lee CH, Abidin UZ
    Biochem. Int., 1989 Oct;19(4):745-53.
    PMID: 2559728
    Cyclic AMP phosphodiesterase (PDE) partially purified from roots of Vigna mungo exhibited optimum activity at pH 5.5 to 6.0 and maximum enzyme activity at 50 degrees C. Levels of PDE activity in roots remained relatively constant from the first to the eleventh day after germination; on the twelfth day there was a 400% increase in PDE activity. The enzyme was stable for at least 48 hours at 28 degrees C, retaining 92% of its original activity. Plant growth hormones including gibberellic acid, indoleacetic acid and kinetin at 1.0 and 10.0 microM concentrations did not have any significant effect on enzyme activity. Nucleotides tested including cyclic 2'3' AMP, cyclic 2'3' GMP completely abolished enzyme activity at 1.0mM while cyclic 3'5' GMP, cyclic 3'5' GMP, 2'deoxy 5' ATP, 2'deoxy 5'GTP and 5'ADP were also inhibitory to the enzyme. The enzyme was stimulated by Mg2+, Fe2+ and NH4+ while Cu2+ and Fe3+ were inhibitory. Theophylline, caffeine, phosphate, pyrophosphate and EDTA were inhibitory to the enzyme.
    Matched MeSH terms: Enzyme Stability
  7. Jaafar NR, Littler D, Beddoe T, Rossjohn J, Illias RM, Mahadi NM, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 11 01;72(Pt 11):831-839.
    PMID: 27827354
    Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.
    Matched MeSH terms: Enzyme Stability
  8. Mok SC, Teh AH, Saito JA, Najimudin N, Alam M
    Enzyme Microb Technol, 2013 Jun 10;53(1):46-54.
    PMID: 23683704 DOI: 10.1016/j.enzmictec.2013.03.009
    A truncated form of an α-amylase, GTA, from thermophilic Geobacillus thermoleovorans CCB_US3_UF5 was biochemically and structurally characterized. The recombinant GTA, which lacked both the N- and C-terminal transmembrane regions, functioned optimally at 70°C and pH 6.0. While enzyme activity was not enhanced by the addition of CaCl2, GTA's thermostability was significantly improved in the presence of CaCl2. The structure, in complex with an acarbose-derived pseudo-hexasaccharide, consists of the typical three domains and binds one Ca(2+) ion. This Ca(2+) ion was strongly bound and not chelated by EDTA. A predicted second Ca(2+)-binding site, however, was disordered. With limited subsites, two novel substrate-binding residues, Y147 and Y182, may help increase substrate affinity. No distinct starch-binding domain is present, although two regions rich in aromatic residues have been observed. GTA, with a smaller domain B and several shorter loops compared to other α-amylases, has one of the most compact α-amylase folds that may contribute greatly to its tight Ca(2+) binding and thermostability.
    Matched MeSH terms: Enzyme Stability
  9. Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, et al.
    Int J Biol Macromol, 2016 Nov;92:1266-1276.
    PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095
    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
    Matched MeSH terms: Enzyme Stability
  10. Said ZSAM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al.
    Int J Biol Macromol, 2019 Apr 15;127:575-584.
    PMID: 30658145 DOI: 10.1016/j.ijbiomac.2019.01.056
    The utilization of organic solvents as reaction media for enzymatic reactions provides numerous industrially attractive advantages. However, an adaptation of enzyme towards organic solvent is unpredictable and not fully understood because of limited information on the organic solvent tolerant enzymes. To understand how the enzyme can adapt to the organic solvent environment, structural and computational approaches were employed. A recombinant elastase from Pseudomonas aeruginosa strain K was an organic solvent tolerant zinc metalloprotease was successfully crystallized and diffracted up to 1.39 Å. Crystal structure of elastase from strain K showed the typical, canonical alpha-beta hydrolase fold consisting of 10-helices (118 residues), 10- β-strands (38 residues) and 142 residues were formed other secondary structure such as loop and coil to whole structure. The elastase from Pseusomonas aeruginosa strain K possess His-140, His-144 and Glu-164 served as a ligand for zinc ion. The conserved catalytic triad was composed of Glu-141, Tyr-155 and His-223. Three-dimensional structure features such as calcium-binding and presence of disulphide-bridge contribute to the stabilizing the elastase structure. Molecular dynamic (MD) simulation of elastase revealed that, amino acid residues located at the surface area and disulphide bridge in Cys-30 to Cys-58 were responsible for enzyme stability in organic solvents.
    Matched MeSH terms: Enzyme Stability
  11. Noorbatcha IA, Sultan AM, Salleh HM, Amid A
    Protein J, 2013 Apr;32(4):309-16.
    PMID: 23636517 DOI: 10.1007/s10930-013-9489-y
    Molecular dynamics simulation was used to study the dynamic differences between native Aspergillus niger PhyA phytase and a mutant with 20 % greater thermostability. Atomic root mean square deviation, radius of gyration, and number of hydrogen bonds and salt bridges are examined to determine thermostability factors. The results suggest that, among secondary structure elements, loops have the most impact on the thermal stability of A. niger phytase. In addition, the location rather than the number of hydrogen bonds is found to have an important contribution to thermostability. The results also show that salt bridges may have stabilizing or destabilizing effect on the enzyme and influence its thermostability accordingly.
    Matched MeSH terms: Enzyme Stability
  12. Zohdi NK, Amid M
    Molecules, 2013;18(11):14366-80.
    PMID: 24264138 DOI: 10.3390/molecules181114366
    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.
    Matched MeSH terms: Enzyme Stability
  13. Ong CB, Annuar MSM
    Prep Biochem Biotechnol, 2018 Feb 07;48(2):181-187.
    PMID: 29341838 DOI: 10.1080/10826068.2018.1425707
    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.
    Matched MeSH terms: Enzyme Stability
  14. Samie N, Haerian B, Muniandy S, Green D, Ashouri M
    Appl Biochem Biotechnol, 2015 Apr;175(7):3397-417.
    PMID: 25820296 DOI: 10.1007/s12010-015-1513-6
    Our newly discovered metalloprotease, designated as ALP NS12 was selected using gelatin agar plates with incubation at 100 °C. Subcloning of the fragments in to pUC118 to make E. coli HB101 (pPEMP01NS) with following two-step chromatography using diethylaminoethyl sepharose (DEAE-sepharose) and Sephadex G-100 columns to purify 97-kDa expressed enzyme was performed. Although activity of immobilized ALP NS12 on glass surface was established at temperatures between 70 and 120 °C and pH ranges 4.0-13.0, the optimum temperature and pH were achieved at 100 °C and 11.0, respectively. Enhancement of enzyme activity was obtained in the presence of 5 mM MnCl2 (91 %), CaCl2 (357 %), FeCl2 (175 %), MgCl2 (94 %), ZnCl2 (412 %), NiCl (86 %), NaCl (239 %), and Na-sulfate (81 %) while inhibition was observed with EDTA (5 mM), PMSF (3 mM), urea (8 M), and SDS (1 %) at 65, 37, 33, and 42 %, respectively. Consequently, the enzyme was well analyzed using crystallography and protein modeling. ALP NS12 can be applied in industrial processes at extreme temperatures and under highly basic conditions, chelators, and detergents.
    Matched MeSH terms: Enzyme Stability
  15. Khoo SL, Amirul AA, Kamaruzaman M, Nazalan N, Azizan MN
    Folia Microbiol (Praha), 1994;39(5):392-8.
    PMID: 7729774
    Aspergillus flavus produced approximately 50 U/mL of amylolytic activity when grown in liquid medium with raw low-grade tapioca starch as substrate. Electrophoretic analysis of the culture filtrate showed the presence of only one amylolytic enzyme, identified as an alpha-amylase as evidenced by (i) rapid loss of color in iodine-stained starch and (ii) production of a mixture of glucose, maltose, maltotriose and maltotetraose as starch digestion products. The enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography and was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme had a molar mass of 52.5 +/- 2.5 kDa with an isoelectric point at pH 3.5. The enzyme was found to have maximum activity at pH 6.0 and was stable in a pH range from 5.0 to 8.5. The optimum temperature for the enzyme was 55 degrees C and it was stable for 1 h up to 50 degrees C. The Km and V for gelatinized tapioca starch were 0.5 g/L and 108.67 mumol reducing sugars per mg protein per min, respectively.
    Matched MeSH terms: Enzyme Stability
  16. Musa H, Hafiz Kasim F, Nagoor Gunny AA, Gopinath SCB, Azmier Ahmad M
    J Basic Microbiol, 2019 Jan;59(1):87-100.
    PMID: 30270443 DOI: 10.1002/jobm.201800382
    An approach was made to enhance the halophilic lipase secretion by a newly isolated moderate halophilic Marinobacter litoralis SW-45, through the statistical optimization of Plackett-Burman (PB) experimental design and the Face Centered Central Composite Design (FCCCD). Initially, PB statistical design was used to screen the medium components and process parameters, while the One-factor-at-a-time technique was availed to find the optimum level of significant parameters. It was found that MgSO4  · 7H2 O, NaCl, agitation speed, FeSO4  · 7H2 O, yeast extract and KCl positively influence the halophilic lipase production, whereas temperature, carbon source (maltose), inducer (olive oil), inoculum size, and casein-peptone had a negative effect on enzyme production. The optimum level of halophilic lipase production was obtained at 3.0 g L-1 maltose, 1% (v/v) olive oil, 30 °C growth temperature and 4% inoculum volume (v/v). Further optimization by FCCCD was revealed 1.7 folds improvement in the halophilic lipase production from 0.603 U ml-1 to 1.0307 U ml-1 . Functional and biochemical characterizations displayed that the lipase was significantly active and stable in the pH ranges of 7.0-9.5, temperature (30-50 °C), and NaCl concentration (0-21%). The lipase was maximally active at pH 8.0, 12% (w/v) NaCl, and 50 °C temperature. Besides, M. litoralis SW-45 lipase was found to possess the promising industrial potential to be utilized as a biocatalyst for the esterification.
    Matched MeSH terms: Enzyme Stability/drug effects
  17. Masomian M, Rahman RN, Salleh AB, Basri M
    PLoS One, 2016;11(3):e0149851.
    PMID: 26934700 DOI: 10.1371/journal.pone.0149851
    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
    Matched MeSH terms: Enzyme Stability/genetics
  18. Hamid TH, Rahman RN, Salleh AB, Basri M
    Protein J, 2010 May;29(4):290-7.
    PMID: 20509044 DOI: 10.1007/s10930-010-9251-7
    The use of lipase in hydrophilic solvent is usually hampered by inactivation. The solvent stability of a recombinant solvent stable lipase isolated from thermostable Bacillus sp. strain 42 (Lip 42), in DMSO and methanol were studied at different solvent-water compositions. The enzymatic activities were retained in up to 45% v/v solvent compositions. The near-UV CD spectra indicated that tertiary structures were perturbed at 60% v/v and above. Far-UV CD in methanol indicated the secondary structure in Lip 42 was retained throughout all solvent compositions. Fluorescence studies indicated formations of molten globules in solvent compositions of 60% v/v and above. The enzyme was able to retain its secondary structures in the presence of methanol; however, there was a general reduction in beta-sheet and an increase in alpha-helix contents. The H-bonding arrangements triggered in methanol and DMSO, respectively, caused different forms of tertiary structure perturbations on Lip 42, despite both showing partial denaturation with molten globule formations.
    Matched MeSH terms: Enzyme Stability
  19. Rahman RN, Mahamad S, Salleh AB, Basri M
    J Ind Microbiol Biotechnol, 2007 Jul;34(7):509-17.
    PMID: 17492323
    Five out of the nine benzene-toulene-ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.
    Matched MeSH terms: Enzyme Stability
  20. Ng ML, Rahmat ZB, Bin Omar MSS
    Curr Comput Aided Drug Des, 2019;15(4):308-317.
    PMID: 30345923 DOI: 10.2174/1573409914666181022141753
    BACKGROUND: Orthosiphon stamineus is a traditional medicinal plant in Southeast Asia countries with various well-known pharmacological activities such as antidiabetic, diuretics and antitumor activities. Transketolase is one of the proteins identified in the leaves of the plant and transketolase is believed able to lower blood sugar level in human through non-pancreatic mechanism. In order to understand the protein behavioral properties, 3D model of transketolase and analysis of protein structure are of obvious interest.

    METHODS: In the present study, 3D model of transketolase was constructed and its atomic characteristics revealed. Besides, molecular dynamic simulation of the protein at 310 K and 368 K deciphered transketolase may be a thermophilic protein as the structure does not distort even at elevated temperature. This study also used the protein at 310 K and 368 K resimulated back at 310 K environment.

    RESULTS: The results revealed that the protein is stable at all condition which suggest that it has high capacity to adapt at different environment not only at high temperature but also from high temperature condition to low temperature where the structure remains unchanged while retaining protein function.

    CONCLUSION: The thermostability properties of transketolase is beneficial for pharmaceutical industries as most of the drug making processes are at high temperature condition.

    Matched MeSH terms: Enzyme Stability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links