Displaying publications 1 - 20 of 112 in total

Abstract:
Sort:
  1. Peng P, Wu D, Huang LJ, Wang J, Zhang L, Wu Y, et al.
    Interdiscip Sci, 2024 Mar;16(1):39-57.
    PMID: 37486420 DOI: 10.1007/s12539-023-00580-0
    Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.
    Matched MeSH terms: Fuzzy Logic*
  2. Shafei H, Rahman RA, Lee YS
    Environ Sci Pollut Res Int, 2024 Feb;31(10):14858-14893.
    PMID: 38285259 DOI: 10.1007/s11356-024-31862-9
    This study aims to compare the impact of Construction 4.0 technologies on different organizational core values, focusing on sustainability and resiliency, well-being, productivity, safety, and integrity. To achieve that aim, the study objectives are the following: (i) identify the critical Construction 4.0 technologies between core values; (ii) appraise overlapping critical Construction 4.0 technologies between core values; (iii) examine the ranking performance of Construction 4.0 technologies between core values; and (iv) analyze the interrelationships between Construction 4.0 technologies and core values. First, twelve Construction 4.0 technologies were identified from a national strategic plan. Then, the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) that incorporates subjective and objective weights was used to evaluate the impact of the Construction 4.0 technologies on the five core values. Finally, the collected data was analyzed using the following techniques: fuzzy TOPSIS, normalization, overlap analysis, agreement analysis, sensitivity analysis, ranking comparison, and Spearman correlation. The study findings reveal four critical Construction 4.0 technologies that enhance all five core values: building information modeling (BIM), Internet of Things (IoT), big data and predictive analytics, and autonomous construction. Also, there is a high agreement on the Construction 4.0 technologies that enhance well-being and productivity. Lastly, artificial intelligence (AI) has the highest number of very strong relationships among the core values. The originality of this paper lies in its comprehensive comparison of the impact of Construction 4.0 technologies on multiple organizational core values. The study findings provide valuable insights in making strategic decisions in adopting Construction 4.0 technologies.
    Matched MeSH terms: Fuzzy Logic*
  3. Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW
    Bioengineered, 2023 Dec;14(1):2244232.
    PMID: 37578162 DOI: 10.1080/21655979.2023.2244232
    Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
    Matched MeSH terms: Fuzzy Logic
  4. Jeon J, Krishnan S, Manirathinam T, Narayanamoorthy S, Nazir Ahmad M, Ferrara M, et al.
    Sci Rep, 2023 Jun 23;13(1):10206.
    PMID: 37353615 DOI: 10.1038/s41598-023-37200-2
    The probabilistic hesitant elements (PHFEs) are a beneficial augmentation to the hesitant fuzzy element (HFE), which is intended to give decision-makers more flexibility in expressing their biases while using hesitant fuzzy information. To extrapolate a more accurate interpretation of the decision documentation, it is sufficient to standardize the organization of the elements in PHFEs without introducing fictional elements. Several processes for unifying and arranging components in PHFEs have been proposed so far, but most of them result in various disadvantages that are critically explored in this paper. The primary objective of this research is to recommend a PHFE unification procedure that avoids the deficiencies of operational practices while maintaining the inherent properties of PHFE probabilities. The prevailing study advances the hypothesis of permutation on PHFEs by suggesting a new sort of PHFS division and subtraction compared with the existing unification procedure. Eventually, the proposed PHFE-unification process will be used in this study, an innovative PHFEs based on the Weighted Aggregated Sum Product Assessment Method-Analytic Hierarchy Process (WASPAS-AHP) perspective for selecting flexible packaging bags after the prohibition on single-use plastics. As a result, we have included the PHFEs-WASPAS in our selection of the most effective fuzzy environment for bio-plastic bags. The ranking results for the suggested PHFEs-MCDM techniques surpassed the existing AHP methods in the research study by providing the best solution. Our solutions offer the best bio-plastic bag alternative strategy for mitigating environmental impacts.
    Matched MeSH terms: Fuzzy Logic
  5. Naderipour A, Abdul-Malek Z, Davoodkhani IF, Kamyab H, Ali RR
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71677-71688.
    PMID: 34241794 DOI: 10.1007/s11356-021-14799-1
    Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter uncertainties of classic controllers, such as operation conditions, the change in the operating point of the microgrid, and the uncertainty of microgrid modeling. Furthermore, a combined fuzzy logic and fractional-order controller is used for load-frequency control of the off-grid microgrid with the influence of renewable resources because the latter controller benefits robust performance and enjoys a flexible structure. To reach a better operation for the proposed controller, a novel meta-heuristic whale algorithm has been used to optimally determine the input and output scale coefficients of the fuzzy controller and fractional orders of the fractional-order controller. The suggested approach is applied to a microgrid with a diesel generator, wind turbine, photovoltaic systems, and energy storage devices. The comparison made between the results of the proposed controller and those of the classic PID controller proves the superiority of the optimized fractional-order self-tuning fuzzy controller in terms of operation characteristics, response speed, and the reduction in frequency deviations against load variations.
    Matched MeSH terms: Fuzzy Logic*
  6. Mohammed N, Palaniandy P, Shaik F, Mewada H, Balakrishnan D
    Chemosphere, 2023 Feb;314:137665.
    PMID: 36581118 DOI: 10.1016/j.chemosphere.2022.137665
    In this approach, a batch reactor was employed to study the degradation of pollutants under natural sunlight using TiO2 as a photocatalyst. The effects of photocatalyst dosage, reaction time and pH were investigated by evaluating the percentage removal efficiencies of total organic carbon (TOC), chemical oxygen demand (COD), biological oxygen demand (BOD) and biodegradability (BOD/COD). Design Expert-Response Surface Methodology Box Behnken Design (BBD) and MATLAB Artificial Neural Network - Adaptive Neuro Fuzzy Inference system (ANN-ANFIS) methods were employed to perform the statistical modelling. The experimental values of maximum percentage removal efficiencies were found to be TOC = 82.4, COD = 85.9, BOD = 30.9% and biodegradability was 0.070. According to RSM-BBD and ANFIS analysis, the maximum percentage removal efficiencies were found to be TOC = 90.3, 82.4; COD = 85.4, 85.9; BOD = 28.9, 30.9% and the biodegradability = 0.074, 0.080 respectively at the pH 7.5, reaction time 300 min and photocatalyst dosage of 4 g L-1. The study reveals both models found to be well predicted as compared with experimental values. The values of R2 for RSM-BBD (0.920) and for ANFIS (0.990) models were almost close to 1. The ANFIS model was found to be marginally better than that of RSM-BBD.
    Matched MeSH terms: Fuzzy Logic
  7. Kushwaha OS, Uthayakumar H, Kumaresan K
    Environ Sci Pollut Res Int, 2023 Feb;30(10):24927-24948.
    PMID: 35349067 DOI: 10.1007/s11356-022-19683-0
    In this study, we are reporting a novel prediction model for forecasting the carbon dioxide (CO2) fixation of microalgae which is based on the hybrid approach of adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). The CO2 fixation rate of various algal strains was collected and the cultivation conditions of the microalgae such as temperature, pH, CO2 %, and amount of nitrogen and phosphorous (mg/L) were taken as the input variables, while the CO2 fixation rate was taken as the output variable. The optimization of ANFIS parameters and the formation of the optimized fuzzy model structure were performed by genetic algorithm (GA) using MATLAB in order to achieve optimum prediction capability and industrial applicability. The best-fitting model was figured out using statistical analysis parameters such as root mean square error (RMSE), coefficient of regression (R2), and average absolute relative deviation (AARD). According to the analysis, GA-ANFIS model depicted a greater prediction capability over ANFIS model. The RMSE, R2, and AARD for GA-ANFIS were observed to be 0.000431, 0.97865, and 0.044354 in the training phase and 0.00056, 0.98457, and 0.032156 in the testing phase, respectively, for the GA-ANFIS Model. As a result, it can be concluded that the proposed GA-ANFIS model is an efficient technique having a very high potential to accurately predict the CO2 fixation rate.
    Matched MeSH terms: Fuzzy Logic
  8. Mustafa S, Mahmood S, Salleh Z
    PLoS One, 2023;18(12):e0283516.
    PMID: 38113247 DOI: 10.1371/journal.pone.0283516
    Diagnosing and finding the disease in medical sciences is a complex procedure. The basic steps involved in finding starts with signs, symptoms, and test. This study is based on the diagnosis of a skin disorder. The identification of a disease has been made on the basis of symptoms that sometimes show bipolarity. To address this bipolarity, the bipolar fuzzy sets are used as bipolar fuzzy sets cover the positive as well as negative aspects of a specific symptom. It is combined with the idea of soft sets, which gives more precise results. We have proposed a new technique in which a correlation coefficient is used to measure bipolar fuzzy soft set, which has been applied for diagnosis. The BFSSs deal most effectively with dual and fuzzy information. The correlation coefficient and the weighted correlation coefficient of BFSSs are suggested in this research. Based on said techniques, the decision-making method is suggested under a bipolar fuzzy environment to resolve ambiguous and unclear information. The implementation and effectiveness of the proposed and existing strategy has been checked by numerical computation.
    Matched MeSH terms: Fuzzy Logic*
  9. Safaei M, A Sundararajan E, Asadi S, Nilashi M, Ab Aziz MJ, Saravanan MS, et al.
    Int J Environ Res Public Health, 2022 Nov 22;19(23).
    PMID: 36497509 DOI: 10.3390/ijerph192315432
    Obesity and its complications is one of the main issues in today's world and is increasing rapidly. A wide range of non-contagious diseases, for instance, diabetes type 2, cardiovascular, high blood pressure and stroke, numerous types of cancer, and mental health issues are formed following obesity. According to the WHO, Malaysia is the sixth Asian country with an adult population suffering from obesity. Therefore, identifying risk factors associated with obesity among Malaysian adults is necessary. For this purpose, this study strives to investigate and assess the risk factors related to obesity and overweight in this country. A quantitative approach was employed by surveying 26 healthcare professionals by questionnaire. Collected data were analyzed with the DEMATEL and Fuzzy Rule-Based methods. We found that lack of physical activity, insufficient sleep, unhealthy diet, genetics, and perceived stress were the most significant risk factors for obesity.
    Matched MeSH terms: Fuzzy Logic
  10. S C, M V P, S V, M N, K P, Panda B, et al.
    Environ Res, 2022 03;204(Pt A):111729.
    PMID: 34478727 DOI: 10.1016/j.envres.2021.111729
    This study was focused on identifying the region suitable for agriculture-based, using new irrigation groundwater quality plot and its spatio-temporal variation with fuzzy logic technique in a geographic information system (GIS) platform. Six hundred and eighty groundwater samples were collected during pre, southwest, northeast, and post monsoon periods. A new ternary plot was also attempted to determine the irrigation suitability of water by considering four essential parameters such as sodium adsorption ratio (SAR), permeability index (PI), Sodium percentage (Na %), and electrical conductivity (EC). The derived ternary plot was the most beneficial over other available plots, as it incorporated four parameters, and it differs from the US Salinity Laboratory (USSL) plot, such that the groundwater with higher EC could also be used for irrigation purposes, depending on the Na%. The ternary plot revealed that the groundwater predominantly manifested good to moderate category during post, northeast, and southwest monsoons. The assessment with the amount of fertilizer used during the study period showed that the NPK fertilizers were effectively used for irrigation during monsoon periods. Spatial maps on EC, Kelly's ratio, Mg hazard, Na%, PI, potential salinity (PS), SAR, residual sodium carbonate (RSC), and soluble sodium percentage (SSP) were prepared for each season using fuzzy membership values, integrated for each season. A final suitability map derived by an overlay of all the seasonal outputs has identified that the groundwater in the western and the eastern part of the study area are suitable for agriculture. The study recommends cultivation of groundwater-dependent short-term crops, along the western and northern regions of the study area during the pre-monsoon season.
    Matched MeSH terms: Fuzzy Logic
  11. Albahri OS, Zaidan AA, Albahri AS, Alsattar HA, Mohammed R, Aickelin U, et al.
    J Adv Res, 2022 Mar;37:147-168.
    PMID: 35475277 DOI: 10.1016/j.jare.2021.08.009
    INTRODUCTION: The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues.

    OBJECTIVES: This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods.

    METHODS: The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM.

    RESULTS: (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values.

    CONCLUSION: The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.

    Matched MeSH terms: Fuzzy Logic
  12. Liu J, Yinchai W, Siong TC, Li X, Zhao L, Wei F
    PLoS One, 2022;17(12):e0278819.
    PMID: 36508410 DOI: 10.1371/journal.pone.0278819
    Deep Residual Networks (ResNets) are prone to overfitting in problems with uncertainty, such as intrusion detection problems. To alleviate this problem, we proposed a method that combines the Adaptive Neuro-fuzzy Inference System (ANFIS) and the ResNet algorithm. This method can make use of the advantages of both the ANFIS and ResNet, and alleviate the overfitting problem of ResNet. Compared with the original ResNet algorithm, the proposed method provides overlapped intervals of continuous attributes and fuzzy rules to ResNet, improving the fuzziness of ResNet. To evaluate the performance of the proposed method, the proposed method is realized and evaluated on the benchmark NSL-KDD dataset. Also, the performance of the proposed method is compared with the original ResNet algorithm and other deep learning-based and ANFIS-based methods. The experimental results demonstrate that the proposed method is better than that of the original ResNet and other existing methods on various metrics, reaching a 98.88% detection rate and 1.11% false alarm rate on the KDDTrain+ dataset.
    Matched MeSH terms: Fuzzy Logic*
  13. Alyousifi Y, Othman M, Husin A, Rathnayake U
    Ecotoxicol Environ Saf, 2021 Dec 20;227:112875.
    PMID: 34717219 DOI: 10.1016/j.ecoenv.2021.112875
    Fuzzy time series (FTS) forecasting models show a great performance in predicting time series, such as air pollution time series. However, they have caused major issues by utilizing random partitioning of the universe of discourse and ignoring repeated fuzzy sets. In this study, a novel hybrid forecasting model by integrating fuzzy time series to Markov chain and C-Means clustering techniques with an optimal number of clusters is presented. This hybridization contributes to generating effective lengths of intervals and thus, improving the model accuracy. The proposed model was verified and validated with real time series data sets, which are the benchmark data of actual trading of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and PM10 concentration data from Melaka, Malaysia. In addition, a comparison was made with some existing fuzzy time series models. Furthermore, the mean absolute percentage error, mean squared error and Theil's U statistic were calculated as evaluation criteria to illustrate the performance of the proposed model. The empirical analysis shows that the proposed model handles the time series data sets more efficiently and provides better overall forecasting results than existing FTS models. The results prove that the proposed model has greatly improved the prediction accuracy, for which it outperforms several fuzzy time series models. Therefore, it can be concluded that the proposed model is a better option for forecasting air pollution parameters and any kind of random parameters.
    Matched MeSH terms: Fuzzy Logic
  14. Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, et al.
    J Infect Public Health, 2021 Oct;14(10):1513-1559.
    PMID: 34538731 DOI: 10.1016/j.jiph.2021.08.026
    The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
    Matched MeSH terms: Fuzzy Logic
  15. Alam Khan N, Abdul Razzaq O, Riaz F, Ahmadian A, Senu N
    J Adv Res, 2021 09;32:109-118.
    PMID: 34484830 DOI: 10.1016/j.jare.2020.11.015
    Introduction: The fusion of fractional order differential equations and fuzzy numbers has been widely used in modelling different engineering and applied sciences problems. In addition to these, the Allee effect, which is of high importance in field of biology and ecology, has also shown great contribution among other fields of sciences to study the correlation between density and the mean fitness of the subject.

    Objectives: The present paper is intended to measure uncertain dynamics of an economy by restructuring the Cobb-Douglas paradigm of the renowned Solow-Swan model. The purpose of study is further boosted innovatively by subsuming the perception of logistic growth with Allee effect in the dynamics of physical capital and labor force.

    Methods: Fractional order derivative and neutrosophic fuzzy (NF) theory are applied on the parameters of the Cobb-Douglas equation. Distinctively, cogitating fractional order derivative to study the change at each fractional stage; single-valued triangular neutrosophic fuzzy numbers (SVTNFN) to cope the uncertain situations; logistic growth function with Allee effect to analyze the factors in natural way, are the significant and novel features of this endeavor.

    Results: The incorporation of the aforementioned theories and effects in the Cobb-Douglas equation, resulted in producing maximum sustainable capital investment and maximum capacity of labor force. The solutions in intervals located different possible solutions for different membership degrees, which accumulated the uncertain circumstances of a country.

    Conclusion: Explicitly, these notions add new facts and figures not only in the dynamical study of capital and labor, which has been overlooked in classical models, but also left the door open for discussion and implementation on classical models of different fields.

    Matched MeSH terms: Fuzzy Logic*
  16. Mohd Azlan NNI, Abdul Malek M, Zolkepli M, Mohd Salim J, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20261-20272.
    PMID: 33405154 DOI: 10.1007/s11356-020-11908-4
    Sustainable water demand management has become a necessity to the world since the immensely growing population and development have caused water deficit and groundwater depletion. This study aims to overcome water deficit by analyzing water demand at Kenyir Lake, Terengganu, using a fuzzy inference system (FIS). The analysis is widened by comparing FIS with the multiple linear regression (MLR) method. FIS applied as an analysis tool provides good generalization capability for optimum solutions and utilizes human behavior influenced by expert knowledge in water resources management for fuzzy rules specified in the system, whereas MLR can simultaneously adjust and compare several variables as per the needs of the study. The water demand dataset of Kenyir Lake was analyzed using FIS and MLR, resulting in total forecasted water consumptions at Kenyir Lake of 2314.38 m3 and 1358.22 m3, respectively. It is confirmed that both techniques converge close to the actual water consumption of 1249.98 m3. MLR showed the accuracy of the water demand values with smaller forecasted errors to be higher than FIS did. To attain sustainable water demand management, the techniques used can be examined extensively by researchers, educators, and learners by adding more variables, which will provide more anticipated outcomes.
    Matched MeSH terms: Fuzzy Logic*
  17. Allawi MF, Aidan IA, El-Shafie A
    Environ Sci Pollut Res Int, 2021 Feb;28(7):8281-8295.
    PMID: 33052565 DOI: 10.1007/s11356-020-11062-x
    The accuracy level for reservoir evaporation prediction is an important issue for decision making in the water resources field. The traditional methods for evaporation prediction could encounter numerous obstacles owing to the effect of several parameters on the shape of the evaporation pattern. The current research presented modern model called the Coactive Neuro-Fuzzy Inference System (CANFIS). Modification for such model has been achieved for enhancing the evaporation prediction accuracy. Genetic algorithm was utilized to select the effective input combination. The efficiency of the proposed model has been compared with popular artificial intelligence models according to several statistical indicators. Two different case studies Aswan High Dam (AHD) and Timah Tasoh Dam (TTD) have been considered to explore the performance of the proposed models. It is concluded that the modified GA-CANFIS model is better than GA-ANFIS, GA-SVR, and GA-RBFNN for evaporation prediction for both case studies. GA-CANFIS attained minimum RMSE (15.22 mm month-1 for AHD, 8.78 mm month-1 for TTD), minimum MAE (12.48 mm month-1 for AHD, 5.11 mm month-1 for TTD), and maximum determination coefficient (0.98 for AHD, 0.95 for TTD).
    Matched MeSH terms: Fuzzy Logic
  18. Lopez CA, Castillo LF, Corchado JM
    Sensors (Basel), 2021 Jan 06;21(2).
    PMID: 33418918 DOI: 10.3390/s21020328
    Internet of Things (IoT) should not be seen only as a cost reduction mechanism for manufacturing companies; instead, it should be seen as the basis for transition to a new business model that monetizes the data from an intelligent ecosystem. In this regard, deciphering the operation of the value creation system and finding the balance between the digital strategy and the deployment of technological platforms, are the main motivations behind this research. To achieve the proposed objectives, systems theory has been adopted in the conceptualization stage, later, fuzzy logic has been used to structure a subsystem for the evaluation of input parameters. Subsequently, system dynamics have been used to build a computational representation and later, through dynamic simulation, the model has been adjusted according to iterations and the identified limits of the system. Finally, with the obtained set of results, different value creation and capture behaviors have been identified. The simulation model, based on the conceptualization of the system and the mathematical representation of the value function, allows to establish a frame of reference for the evaluation of the behaviour of IoT ecosystems in the context of the connected home.
    Matched MeSH terms: Fuzzy Logic
  19. Alakbari FS, Mohyaldinn ME, Ayoub MA, Muhsan AS, Hussein IA
    PLoS One, 2021;16(4):e0250466.
    PMID: 33901240 DOI: 10.1371/journal.pone.0250466
    Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model's reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.
    Matched MeSH terms: Fuzzy Logic*
  20. Latif G, Alghazo J, Sibai FN, Iskandar DNFA, Khan AH
    Curr Med Imaging, 2021;17(8):917-930.
    PMID: 33397241 DOI: 10.2174/1573405616666210104111218
    BACKGROUND: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques.

    OBJECTIVE: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers.

    RESULTS: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging.

    CONCLUSION: In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.

    Matched MeSH terms: Fuzzy Logic*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links