Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Gadahad MR, Rao M, Rao G
    J Chin Med Assoc, 2008 Jan;71(1):6-13.
    PMID: 18218554
    BACKGROUND: Centella asiatica (CeA) is a creeper, growing in moist places in India and other Asian countries. Leaves of CeA are used for memory enhancement in the Ayurvedic system of medicine, an alternate system of medicine in India. In the present study, we investigated the role of CeA fresh leaf extract treatment on the dendritic morphology of hippocampal CA3 neurons, one of the regions concerned with learning and memory, in adult rats.

    METHODS: In the present study, adult rats (2.5 months old) were fed with 2, 4 and 6 mL/kg body weight of fresh leaf extract of CeA for 2, 4 and 6 weeks, respectively. After the treatment period, the rats were killed, brains were removed and hippocampal neurons were impregnated with silver nitrate (Golgi staining). Hippocampal CA3 neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization) and intersections (a measure of dendritic length) were quantified. These data were compared with those of age-matched control rats.

    RESULTS: The results showed a significant increase in the dendritic length (intersections) and dendritic branching points along the length of both apical and basal dendrites in rats treated with 6 mL/kg body weight/day of CeA for 6 weeks. However, the rats treated with 2 and 4 mL/kg body weight/day for 2 and 4 weeks did not show any significant change in hippocampal CA3 neuronal dendritic arborization.

    CONCLUSION: We conclude that constituents present in Centella asiatica fresh leaf extract has neuronal dendritic growth-stimulating properties.

    Matched MeSH terms: Hippocampus/drug effects*
  2. Mitra NK, Siong HH, Nadarajah VD
    Ann Agric Environ Med, 2008;15(2):211-6.
    PMID: 19061257
    Dermal absorption of chlorpyrifos, an organophosphate insecticide is important because of its use in agriculture and control of household pests. The objectives of this study are to investigate firstly, the biochemical changes in the blood and secondly, histomorphometric changes in the hippocampus of adult mice following dermal application of chlorpyrifos in sub-toxic doses. Male Swiss albino mice (60 days) were segregated into one control and two treated groups (n=10). Chlorpyrifos, diluted with xylene, was applied in doses of 1/2 of LD(50) (E1) and 1/5 of LD(50) (E2) over the tail of mice of the two treated groups, 6 hours daily for 3 weeks. AChE levels in the serum and brain were estimated using a spectrophotometric method (Amplex Red reagent). Coronal serial sections were stained with 0.2 % thionin in acetate buffer and pyramidal neurons of Cornu Ammonis of hippocampus were counted at 400x magnification using Image Pro Express software. At the end of 3 weeks, body weights were reduced significantly in E1 group. Serum AChE concentrations were reduced by 97 % in E1 and 74 % in E2 groups compared to controls. The neurons of CA 3 and CA 1 in the hippocampus showed evidences of morphological damage in both treated groups. Furthermore, the neuronal count was significantly reduced in CA 3 layer of hippocampus in E1 group.
    Matched MeSH terms: Hippocampus/drug effects*
  3. Mitra NK, Nadarajah VD, Siong HH
    Folia Neuropathol, 2009;47(1):60-8.
    PMID: 19353435
    Dermal absorption of chlorpyrifos (CPF), an organophosphate (OP) pesticide, is important because of its popular use. Stress has been reported to exacerbate neurotoxic effects of certain OP pesticides; however, quantitative studies to corroborate this are not reported. This study correlates the changes in acetylcholinesterase (AChE) levels and neuronal counts in areas of the hippocampus to consecutive exposure of stress, heat and CPF. Male mice (60 days) were segregated into six groups: one control, one stress control, and four treated groups (n=10). CPF was applied in doses of 1/2 and 1/5 of dermal LD50 (E1 and E2) over the tail of mice under occlusive bandages for 3 weeks. Stress control [(s) C] mice were subjected to swim stress at 38 degrees C (6 mins/day, 3 weeks). (s) E1 and (s) E2 were subjected to swim stress before CPF application. Blood and brain AChE levels were estimated using a spectrofluorometric method (Amplex Red). Pyramidal neurons of the cornu ammonis of the hippocampus under Nissl stain from histological sections were counted per unit area of section and analyzed statistically using one way ANOVA. Swim stress at 38 degrees C aggravated reduction of serum AChE by dermal exposure to CPF by 19.7%. Neurons of CA3 and CA1 regions of the hippocampus showed significant reduction in neuronal counts in (s) E1 and (s) E2 groups compared to E1 and E2 groups. Whereas application of CPF 1/2 dermal LD50 (E1) showed significant reduction of neuronal counts only in the CA3 area.
    Matched MeSH terms: Hippocampus/drug effects*
  4. Haleagrahara N, Ponnusamy K
    J Toxicol Sci, 2010 Feb;35(1):41-7.
    PMID: 20118623
    Reactive oxygen species (ROS) play an important role in ageing and age-related neurodegenerative changes including Parkinson's disease (PD). PD is characterized by signs of major oxidative stress and mitochondrial damage in the pars compacta of the substantia nigra. Present study was designed to investigate whether the Centella asiatica extract (CAE) would prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in aged Sprague-Dawley rats. Adult, male Sprague-dawley rats of 300-350 g were divided into control, C. asiatica alone, MPTP alone (20 mg/kg, for 21 days) and MPTP with C. asiatica (300 mg/kg for 21 days) groups. Effect of aqueous extract of C. asiatica on oxidative biomarker levels in corpus striatum and hippocampus homogenate was examined. MPTP-challenged rats elicited a significant increase in lipid hydroperoxides (LPO) (p < 0.01), protein-carbonyl-content (PCC) (p < 0.01) and xanthine oxidase (XO) (p < 0.01) when compared with control rats. There was a significant decrease in total antioxidants (TA) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.01) and catalase (CAT) (p < 0.001) levels with MPTP treatment. Supplementation of CAE reduced LPO and PCC and significantly increased (p < 0.01) TA and antioxidant enzyme levels (p < 0.01) in corpus striatum and hippocampus. These results show that administration of C. asiatica was effective in protecting the brain against neurodegenerative disorders such as Parkinsonism.
    Matched MeSH terms: Hippocampus/drug effects
  5. Nasir MN, Abdullah J, Habsah M, Ghani RI, Rammes G
    Phytomedicine, 2012 Feb 15;19(3-4):311-6.
    PMID: 22112723 DOI: 10.1016/j.phymed.2011.10.004
    The asiatic acid, a triterpenoids isolated from Centella asiatica was used to delineate its inhibitory effect on acetylcholinesterase (AChE) properties, excitatory post synaptic potential (EPSP) and locomotor activity. This study is consistent with asiatic acid having an effect on AChE, a selective GABA(B) receptor agonist and no sedative effect on locomotor.
    Matched MeSH terms: Hippocampus/drug effects
  6. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: Hippocampus/drug effects*
  7. Karimi B, Hafidzi MN, Panandam JM, Fuzina NH
    J Biol Regul Homeost Agents, 2013 Jul-Sep;27(3):869-74.
    PMID: 24152851
    It has long been known that spatial memory and the ability to navigate through space are sexually dimorphic traits among mammals, and numerous studies have shown that these traits can be altered by means of sex hormone manipulation. Hippocampus, the main organ involved in this kind of memory, has specific signature genes with high expression level compared to other regions of the brain. Based on their expression levels and the role that products of these genes can play in processes like signal transduction, mediation of hormone effects and long term potentiation, these genes can be considered as genes necessary for routine tasks of hippocampus. Male and female rat pups were injected with estradiol and testosterone respectively. at early stage of their lives to examine the effect of sex hormone manipulation on mRNA expression of Slc9a4, Nr3c2, Htr5b and Mas1 using comparative quantitative real-time polymerase chain reaction. The results showed that expressions of these genes are strongly influenced by sex hormones in both the frontal cortex and hippocampus, especially in male hippocampus, in which expression of all genes were up-regulated. Htr5b was the only gene that was affected only in the males. Expression of Mas1 was contrary to expectations, showed stronger changes in its expression in cortex than in hippocampus. Nr3c2 was down regulated in all samples but up regulated in male hippocampus, and Slc9a4 also showed a huge up-regulation in male hippocampus compared to other samples.
    Matched MeSH terms: Hippocampus/drug effects
  8. Arbabi L, Baharuldin MT, Moklas MA, Fakurazi S, Muhammad SI
    Behav Brain Res, 2014 Sep 1;271:65-71.
    PMID: 24867329 DOI: 10.1016/j.bbr.2014.05.036
    Postpartum depression (PPD) is a psychiatric disorder that occurs in 10-15% of childbearing women. It is hypothesized that omega-3 fatty acids, which are components of fish oil, may attenuate depression symptoms. In order to examine this hypothesis, the animal model of postpartum depression was established in the present study. Ovariectomized female rats underwent hormone-simulated pregnancy (HSP) regimen and received progesterone and estradiol benzoate or vehicle for 23 days, mimicking the actual rat's pregnancy. The days after hormone termination were considered as the postpartum period. Forced feeding of menhaden fish oil, as a source of omega-3, with three doses of 1, 3, and 9g/kg/d, fluoxetine 15mg/kg/d, and distilled water 2ml/d per rat started in five postpartum-induced and one vehicle group on postpartum day 1 and continued for 15 consecutive days. On postpartum day 15, all groups were tested in the forced swimming test (FST) and open field test (OFT), followed by a biochemical assay. Results showed that the postpartum-induced rats not treated with menhaden fish oil, exhibited an increase in immobility time seen in FST, hippocampal concentration of corticosterone and plasmatic level of corticosterone, and pro-inflammatory cytokines. These depression-related effects were attenuated by supplementation of menhaden fish oil with doses of 3 and 9g/kg. Moreover, results of rats supplemented with menhaden fish oil were comparable to rats treated with the clinically effective antidepressant, fluoxetine. Taken together, these results suggest that menhaden fish oil, rich in omega-3, exerts beneficial effect on postpartum depression and decreases the biomarkers related to depression such as corticosterone and pro-inflammatory cytokines.
    Matched MeSH terms: Hippocampus/drug effects
  9. Pamidi N, Nayak S
    Biomed J, 2014 Jul-Aug;37(4):225-31.
    PMID: 25116719 DOI: 10.4103/2319-4170.125651
    BACKGROUND: Environmental enrichment (EE) exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ)-induced diabetic and stressed rat hippocampus.
    METHODS: Male albino rats of Wistar strain (4-5 weeks old) were grouped into normal control (NC), vehicle control (VC), diabetes (DI), diabetes + stress (DI + S), diabetes + EE (DI + E), and diabetes + stress + EE (DI + S + E) groups (n = 8 in each group). Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg). Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH) regions of hippocampus.
    RESULTS: A significant (p < 0.001) decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02) as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21) group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03). A significant (p < 0.001) increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19) and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36) group rats compared to DI and DI + S groups, respectively.
    CONCLUSIONS: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.
    Matched MeSH terms: Hippocampus/drug effects
  10. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Hippocampus/drug effects*
  11. Chidambaram SB, Pandian A, Sekar S, Haridass S, Vijayan R, Thiyagarajan LK, et al.
    Environ Toxicol, 2016 Dec;31(12):1955-1963.
    PMID: 26434561 DOI: 10.1002/tox.22196
    PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice.

    METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining.

    RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice.

    CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.

    Matched MeSH terms: Hippocampus/drug effects
  12. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
    Matched MeSH terms: Hippocampus/drug effects
  13. Kurhe Y, Mahesh R, Devadoss T
    Psychopharmacology (Berl), 2017 Apr;234(7):1165-1179.
    PMID: 28238069 DOI: 10.1007/s00213-017-4558-0
    RATIONALE: Depression associated with obesity remains an interesting area to study the biological mechanisms and novel therapeutic intervention.

    OBJECTIVES: The present study investigates the effect of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on several pathogenic markers of depression associated with obesity such as plasma insulin resistance, hippocampal cyclic adenosine monophosphate (cAMP), brain-derived neurotrophic factor (BDNF), serotonin (5-HT) concentrations, hippocampal neuronal damage, and p53 protein expression in high-fat-diet (HFD)-fed mice.

    METHODS: Obesity was experimentally induced in mice by feeding with HFD for 14 weeks followed by administration of QCM-4 (1 and 2 mg/kg, p.o.)/standard escitalopram (ESC) (10 mg/kg, p.o.)/vehicle (10 ml/kg, p.o.) for 28 days. Behavioral assays such as sucrose preference test (SPT); forced swim test (FST); elevated plus maze (EPM); biochemical assays including oral glucose tolerance tests (OGTT), insulin, cAMP, BDNF, and 5-HT concentrations; and molecular assays mainly histology and immunohistochemistry (IHC) of p53 protein in the dentate gyrus (DG), CA1, and CA3 regions of hippocampus in HFD fed mice were performed.

    RESULTS: Chronic treatment with QCM-4 in HFD-fed mice reversed the behavioral alterations in SPT, FST, and EPM. QCM-4 showed poor sensitivity for plasma glucose, improved insulin sensitivity, increased hippocampal cAMP, BDNF, and 5-HT concentrations. In the hippocampal DG, CA1, and CA3 regions, QCM-4 treatment improved the neuronal morphology in the histopathology and inhibited p53 protein expression in IHC assay in HFD-fed mice.

    CONCLUSION: QCM-4 attenuated the depressive-like phenotype in HFD-fed mice by improving behavioral, biochemical, and molecular alterations through serotonergic neuromodulation.

    Matched MeSH terms: Hippocampus/drug effects
  14. Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Abdullah MA, et al.
    Biomed Pharmacother, 2017 Nov;95:780-788.
    PMID: 28892789 DOI: 10.1016/j.biopha.2017.08.074
    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue.
    Matched MeSH terms: Hippocampus/drug effects
  15. Hou Z, He P, Imam MU, Qi J, Tang S, Song C, et al.
    Oxid Med Cell Longev, 2017;2017:7205082.
    PMID: 29104731 DOI: 10.1155/2017/7205082
    Menopause causes cognitive and memory dysfunction due to impaired neuronal plasticity in the hippocampus. Sirtuin-1 (SIRT1) downregulation in the hippocampus is implicated in the underlying molecular mechanism. Edible bird's nest (EBN) is traditionally used to improve general wellbeing, and in this study, we evaluated its effects on SIRT1 expression in the hippocampus and implications on ovariectomy-induced memory and cognitive decline in rats. Ovariectomized female Sprague-Dawley rats were fed with normal pellet alone or normal pellet + EBN (6, 3, or 1.5%), compared with estrogen therapy (0.2 mg/kg/day). After 12 weeks of intervention, Morris water maze (four-day trial and one probe trial) was conducted, and serum estrogen levels, toxicity markers (alanine transaminase, alkaline phosphatase, urea, and creatinine), and hippocampal SIRT1 immunohistochemistry were estimated after sacrifice. The results indicated that EBN and estrogen enhanced spatial learning and memory and increased serum estrogen and hippocampal SIRT1 expression. In addition, the EBN groups did not show as much toxicity to the liver as the estrogen group. The data suggested that EBN treatment for 12 weeks could improve cognition and memory in ovariectomized female rats and may be an effective alternative to estrogen therapy for menopause-induced aging-related memory loss.
    Matched MeSH terms: Hippocampus/drug effects*
  16. Chellian R, Pandy V, Mohamed Z
    Eur J Pharmacol, 2018 Jan 05;818:10-16.
    PMID: 29042206 DOI: 10.1016/j.ejphar.2017.10.025
    In the present study, the effect α-asarone on nicotine withdrawal-induced depression-like behavior in mice was investigated. In this study, mice were exposed to drinking water or nicotine solution (10-200µg/ml) as a source of drinking for forty days. During this period, daily fluid consumption, food intake and body weight were recorded. The serum cotinine level was estimated before nicotine withdrawal. Naïve mice or nicotine-withdrawn mice were treated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) for eight consecutive days and the forced swim test (FST) or locomotor activity test was conducted. In addition, the effect of α-asarone or bupropion on the hippocampal pCREB, CREB and BDNF levels during nicotine-withdrawal were measured. Results indicated that α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment did not significantly alter the immobility time in the FST or spontaneous locomotor activity in naïve mice. However, the immobility time of nicotine-withdrawn mice was significantly attenuated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment in the FST. Besides, α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment significantly attenuated the hippocampal pCREB levels in nicotine-withdrawn mice. Overall, the present results indicate that α-asarone treatment attenuated the depression-like behavior through the modulation of hippocampal pCREB levels during nicotine-withdrawal in mice.
    Matched MeSH terms: Hippocampus/drug effects*
  17. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Hippocampus/drug effects*
  18. Chiroma SM, Mohd Moklas MA, Mat Taib CN, Baharuldin MTH, Amon Z
    Biomed Pharmacother, 2018 Jul;103:1602-1608.
    PMID: 29864948 DOI: 10.1016/j.biopha.2018.04.152
    Cognitive impairments and cholinergic dysfunctions have been well reported in old age disorders including Alzheimer's disease (AD). d-galactose (D-gal) has been reported as a senescence agent while aluminium act as a neurotoxic metal, but little is known about their combined effects at different doses. The aim of this study was to establish an animal model with cognitive impairments by comparing the effects of different doses of co-administrated D-gal and aluminium chloride (AlCl3). In this study male albino wistar rats were administered with D-gal 60 mg/kg.bwt intra peritoneally (I.P) injected and AlCl3 (100, 200, or 300 mg/kg.bwt.) was orally administered once daily for 10 consecutive weeks. Performance of the rats were evaluated through behavioural assessments; Morris water maze (MWM) and open field tests (OFT); histopathological examination was performed on the hippocampus; moreover biochemical measurements of acetylcholinesterase (AChE) and hyperphosphorylated tau protein (p-tau) were examined. The results of this experiment on rats treated with D-gal 60 + AlCl3 200 mg/kg.bwt showed near ideal cognitive impairments. The rats exhibited an obvious memory and learning deficits, marked neuronal loss in hippocampus, showed increase in AChE activities and high expression of p-tau within the tissues of the brain. This study concludes that D-gal 60 + AlCl3 200 mg/kg.bwt as the ideal dose for mimicking AD like cognitive impairments in albino wistar rats. It is also crucial to understand the pathogenesis of this neurodegenerative disease and for drug discovery.
    Matched MeSH terms: Hippocampus/drug effects
  19. Andy SN, Pandy V, Alias Z, Kadir HA
    Life Sci, 2018 Aug 01;206:45-60.
    PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035
    AIM: Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model.

    MATERIALS AND METHODS: In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group.

    KEY FINDINGS: DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3.

    SIGNIFICANCE: Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.

    Matched MeSH terms: Hippocampus/drug effects
  20. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al.
    Brain Behav, 2018 09;8(9):e01093.
    PMID: 30105867 DOI: 10.1002/brb3.1093
    INTRODUCTION: Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.

    METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.

    RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p  0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.

    CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.

    Matched MeSH terms: Hippocampus/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links