Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Nadarajan VS, Phan CL, Ang CH, Liang KL, Gan GG, Bee PC, et al.
    Int J Hematol, 2011 Apr;93(4):465-473.
    PMID: 21387093 DOI: 10.1007/s12185-011-0796-9
    The outcome of treating chronic myeloid leukemia (CML) with imatinib mesylate (IM) is inferior when therapy is commenced in late chronic or accelerated phase as compared to early chronic phase. This may be attributed to additional genomic alterations that accumulate during disease progression. We sought to identify such lesions in patients showing suboptimal response to IM by performing array-CGH analysis on 39 sequential samples from 15 CML patients. Seventy-four cumulative copy number alterations (CNAs) consisting of 35 losses and 39 gains were identified. Alterations flanking the ABL1 and BCR genes on chromosomes 9 and 22, respectively, were the most common identified lesions with 5 patients losing variable portions of 9q34.11 proximal to ABL1. Losses involving 1p36, 5q31, 17q25, Y and gains of 3q21, 8q24, 22q11, Xp11 were among other recurrent lesions identified. Aberrations were also observed in individual patients, involving regions containing known leukemia-associated genes; CDKN2A/2B, IKZF1, RB1, TLX1, AFF4. CML patients in late stages of their disease, harbor pre-existing and evolving sub-microscopic CNAs that may influence disease progression and IM response.
    Matched MeSH terms: Imatinib Mesylate
  2. Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al.
    Asian Pac J Cancer Prev, 2018 Dec 25;19(12):3317-3320.
    PMID: 30583336
    Objective: Chronic Myeloid Leukemia (CML) is caused by a reciprocal translocation between chromosomes 9
    and 22, t(9;22) (q34;q11) which encodes for the BCR-ABL fusion protein. Discovery of Imatinib Mesylate (IM) as
    first line therapy has brought tremendous improvement in the management of CML. However, emergence of point
    mutations within the BCR-ABL gene particularly T315I mutation, affects a common BCR-ABL kinase contact residue
    which impairs drug binding thus contribute to treatment resistance. This study aims to investigate the BCR-ABL T315I
    mutation in Malaysian patients with CML. Methods: A total of 285 patients diagnosed with CML were included in this
    study. Mutation detection was performed using qualitative real-time PCR (qPCR). Results: Fifteen out of 285 samples
    (5.26%) were positive for T315I mutations after amplification with real-time PCR assay. From the total number of
    positive samples, six patients were in accelerated phase (AP), four in chronic phase (CP) and five in blast crisis (BC).
    Conclusion: Mutation testing is recommended for choosing various tyrosine kinase inhibitors (TKIs) to optimize
    outcomes for both cases of treatment failure or suboptimal response to imatinib. Therefore, detection of T315I mutation
    in CML patients are clinically useful in the selection of appropriate treatment strategies to prevent disease progression.
    Matched MeSH terms: Imatinib Mesylate/therapeutic use*
  3. Husaini R, Ahmad M, Zakaria Z
    Exp Ther Med, 2017 Jun;13(6):3209-3216.
    PMID: 28587395 DOI: 10.3892/etm.2017.4443
    Chronic myeloid leukaemia (CML) is a form of leukaemia derived from the myeloid cell lineage. Imatinib mesylate, the breakpoint cluster region-abelson murine leukeamia kinase inhibitor, is a specific reagent used in the clinical treatment of CML. The DNA topoisomerase II inhibitor, etoposide, is also employed as a therapeutic, though it is used to a lesser extent. The present study aims to evaluate the effects of CML-targeted therapy, utilising imatinib mesylate and etoposide in the in vitro treatment of parental sensitive and adriamycin-resistant CML in the K562 and K562/ADM cell lines, respectively. Preliminary work involved the screening of multidrug resistant (MDR) gene expression, including MDR1, MRP1 and B-cell lymphoma 2 (BCL-2) at the mRNA levels. The sensitive and resistant CML cell lines expressed the MRP1 gene, though the sensitive K562 cells expressed low, almost undetectable levels of MDR1 and BCL-2 genes relative to the K562/ADM cells. Following treatment with imatinib mesylate or etoposide, the IC50 for imatinib mesylate did not differ between the sensitive and resistant cell lines (0.492±0.024 and 0.378±0.029, respectively), indicating that imatinib mesylate is effective in the treatment of CML regardless of cell chemosensitivity. However, the IC50 for etoposide in sensitive K562 cells was markedly lower than that of K562/ADM cells (50.6±16.5 and 194±8.46 µM, respectively), suggesting that the higher expression levels of MDR1 and/or BCL-2 mRNA in resistant cells may be partially responsible for this effect. This is supported by terminal deoxynucleotidyl transferase dUTP nick-end labeling data, whereby a higher percentage of apoptotic cells were found in the sensitive and resistant K562 cells treated with imatinib mesylate (29.3±0.2 and 31.9±16.7%, respectively), whereas etoposide caused significant apoptosis of sensitive K562 cells (18.3±8.35%) relative to K562/ADM cells (5.17±3.3%). In addition, the MDR genes in K562/ADM cells were knocked down by short interfering RNAs. The percentage knockdowns were 15.4% for MRP1, 17.8% for MDR and 30.7% for BCL-2, which resulted in a non-significant difference in the half maximal inhibitory concentration value of K562/ADM cells relative to K562 cells upon treatment with etoposide.
    Matched MeSH terms: Imatinib Mesylate
  4. Yap E, Norziha ZA, Simbun A, Tumian NR, Cheong SK, Leong CF, et al.
    Leuk. Res., 2017 08;59:32-40.
    PMID: 28544907 DOI: 10.1016/j.leukres.2017.05.015
    Chronic myeloid leukemia (CML) patients who do not achieve landmark responses following treatment with imatinib mesylate (IM) are considered IM-resistant. Although IM-resistance can be due to BCR-ABL kinase domain (KD) mutations, many IM-resistant patients do not have detectable BCR-ABL KD mutations. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression. To investigate the role of miRNAs in IM-resistance, we recruited 8 chronic phase CML patients with IM-resistance who tested negative for BCR-ABL KD mutations and 2 healthy normal controls. Using miRNA sequencing, we identified 54 differentially expressed miRNAs; 43 of them downregulated. The 3 most differentially downregulated miRNAs were miR-146a-5p, miR-99b-5p and miR-151a-5p. Using real-time quantitative reverse transcriptase-polymerase chain reaction, the expression patterns of the 3 miRNAs were validated on the same cohort of 8 patients in addition to 3 other IM-resistant CML patients. In-silico analysis showed that the predicted gene targets are ATRIP, ATR, WDR48, RAD51C and FANCA genes which are involved in the Fanconi Anemia/BRCA pathway. This pathway regulates DNA damage response (DDR) and influences disease response to chemotherapy. Thus it is conceivable that DDR constitutes a key component in IM-resistance. Further research is needed to elucidate miRNA modulation of the predicted gene targets.
    Matched MeSH terms: Imatinib Mesylate/pharmacology*; Imatinib Mesylate/therapeutic use
  5. Yap E, Tumian NR, Azma RZ, Sharifah NA, Salwati S, Hamidah NH, et al.
    Malays J Pathol, 2017 Aug;39(2):107-113.
    PMID: 28866691 MyJurnal
    Clinical resistance to imatinib (IM) in chronic myeloid leukemia (CML) carries adverse consequences. We investigated 22 CML patients who developed IM-resistance for BCR-ABL kinase domain (KD) mutations. The median follow-up for this study was 101.9 months (range: 22.2 to 176.5 months) and the estimated mean overall survival was 150.87 months (95% CI: 130.0 to 171.0). Five out of 22 patients tested positive for BCR-ABL KD mutations: 2 had T315I, 2 had E255K and 1 had V289F mutations. Of the remaining 17 patients who did not harbor BCR-ABL KD mutations, 11 patients received nilotinib while the rest continued on IM. All 17 achieved haematological remission but only 5 patients achieved complete cytogenetic remission, 4 of whom did so after switching to nilotinib. Our study shows that most of our IM-resistant patients do not test positive for BCR-ABL KD mutations by available testing methods and the role of second generation tyrosine kinase inhibitors remains undetermined. A critical analysis of the BCR-ABL KD mutations and the underlying mechanisms/ pathways of BCR-ABL independent IM-resistance along with potential treatments in the horizon will be discussed.
    Matched MeSH terms: Imatinib Mesylate
  6. Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR
    Asian Pac J Cancer Prev, 2018 Jun 25;19(6):1585-1590.
    PMID: 29936783
    Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and
    progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways.
    Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of
    PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/
    ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated
    with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were
    treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively.
    Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation
    status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in
    K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased
    in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed
    higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to
    imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
    Matched MeSH terms: Imatinib Mesylate
  7. Briercheck EL, Wrigglesworth JM, Garcia-Gonzalez I, Scheepers C, Ong MC, Venkatesh V, et al.
    JAMA Netw Open, 2024 Apr 01;7(4):e244898.
    PMID: 38568688 DOI: 10.1001/jamanetworkopen.2024.4898
    IMPORTANCE: Gastrointestinal stromal tumor (GIST) is a rare cancer treated with the tyrosine kinase inhibitors imatinib mesylate or sunitinib malate. In general, in low- and middle-income countries (LMICs), access to these treatments is limited.

    OBJECTIVE: To describe the demographic characteristics, treatment duration, and survival of patients with GIST in LMICs treated with imatinib and sunitinib through The Max Foundation programs.

    DESIGN, SETTING, AND PARTICIPANTS: This retrospective database cohort analysis included patients in 2 access programs administered by The Max Foundation: the Glivec International Patient Assistance Program (GIPAP), from January 1, 2001, to December 31, 2016, and the Max Access Solutions (MAS) program, January 1, 2017, to October 12, 2020. Sixty-six countries in which The Max Foundation facilitates access to imatinib and sunitinib were included. Participants consisted of patients with approved indications for imatinib, including adjuvant therapy in high-risk GIST by pathologic evaluation of resected tumor or biopsy-proven unresectable or metastatic GIST. All patients were reported to have tumors positive for CD117(c-kit) by treating physicians. A total of 9866 patients received treatment for metastatic and/or unresectable disease; 2100 received adjuvant imatinib; 49 received imatinib from another source and were only included in the sunitinib analysis; and 53 received both imatinib and sunitinib through The Max Foundation programs. Data were analyzed from October 13, 2020, to January 30, 2024.

    MAIN OUTCOMES AND MEASURES: Demographic and clinical information was reported by treating physicians. Kaplan-Meier analysis was used to estimate time to treatment discontinuation (TTD) and overall survival (OS). An imputation-based informed censoring model estimated events for patients lost to follow-up after treatment with adjuvant imatinib. Patients who were lost to follow-up with metastatic or unresectable disease were presumed deceased.

    RESULTS: A total of 12 015 unique patients were included in the analysis (6890 male [57.6%]; median age, 54 [range, 0-100] years). Of these, 2100 patients were treated with imatinib in the adjuvant setting (median age, 54 [range 8-88] years) and 9866 were treated with imatinib for metastatic or unresectable disease (median age, 55 [range, 0-100] years). Male patients comprised 5867 of 9866 patients (59.5%) with metastatic or unresectable disease and 1023 of 2100 patients (48.7%) receiving adjuvant therapy. The median OS with imatinib for unresectable or metastatic disease was 5.8 (95% CI, 5.6-6.1) years, and the median TTD was 4.2 (95% CI, 4.1-4.4) years. The median OS with sunitinib for patients with metastatic or unresectable GIST was 2.0 (95% CI, 1.5-2.5) years; the median TTD was 1.5 (95% CI, 1.0-2.1) years. The 10-year OS rate in the adjuvant setting was 73.8% (95% CI, 67.2%-81.1%).

    CONCLUSIONS AND RELEVANCE: In this cohort study of patients with GIST who were predominantly from LMICs and received orally administered therapy through the GIPAP or MAS programs, outcomes were similar to those observed in high-resource countries. These findings underscore the feasibility and relevance of administering oral anticancer therapy to a molecularly defined population in LMICs, addressing a critical gap in cancer care.

    Matched MeSH terms: Imatinib Mesylate/therapeutic use
  8. Bee PC, Gan GG, Tai YT, Haris AR, Chin E, Veera SN
    Singapore Med J, 2012 Jan;53(1):57-61.
    PMID: 22252185
    The introduction of imatinib mesylate in 1998 has changed the management of chronic myeloid leukaemia. It is now the first-line therapy for newly diagnosed chronic myeloid leukaemia patients worldwide. However, its long-term survival benefit still needs to be established in clinical setting among Asian patients.
    Matched MeSH terms: Imatinib Mesylate
  9. Annuar AA, Ankathil R, Mohd Yunus N, Husin A, Ab Rajab NS, Abdul Aziz AA, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(2):565-571.
    PMID: 33639675 DOI: 10.31557/APJCP.2021.22.2.565
    BACKGROUND: The FAS mediated apoptosis pathway involving the FAS and FASL genes plays a crucial role in the regulation of apoptotic cell death and imatinib mesylate (IM) mechanism of action. Promoter polymorphisms FAS-670 A>G and FAS-844 T>C which alter the transcriptional activity of these genes may grant a risk to develop cancer and revamp the drug activities towards the cancer cell. We investigated the association of these two polymorphisms with the susceptibility risk and IM treatment response in Malaysian chronic myeloid leukaemia (CML) patients.

    METHODS: This is a retrospective study, which included 93 CML patients and 98 controls. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to genotype the FAS and FASL polymorphisms. Data nanlysis was done using SPSS Version 22. The associations of the genotypes with susceptibility risk and IM response in CML patients were assessed by means of logistic regression analysis and deriving odds ratio with 95% CI.

    RESULTS: We observed a significant association between FASL-844T>C polymorphism and CML susceptibility risk and IM response. Variant C allele and FASL-844 CC variant genotype carriers had significantly higher risk for CML susceptibility (OR 1.756, CI 1.163-2.652, p=0.007 and OR 2.261, CI 1.013-5.047, p=0.047 respectively). Conversely, the heterozygous genotype FASL-844 TC conferred lower risk for CML susceptibility (OR 0.379, CI 0.176-0.816, p=0.013). The heterozygous and homozygous variant genotypes and variant C alleles were found to confer a lower risk for the development of IM resistance with OR 0.129 (95% CI: 0.034-0.489 p=0.003), OR 0.257 (95% CI: 0.081-0.818, p=0.021), and OR 0.486 (95% CI: 0.262-0.899, p=0.021) respectively. We also found that FAS-670 A>G polymorphism was not associated with CML susceptibility risk or IM response.

    CONCLUSION: The genetic polymorphism FASL-844 T>C may contribute to the CML susceptibility risk and also IM treatment response in CML patients. Accodringly, it may be useful as a biomarker for predicting CML susceptibility risk and IM resistance.

    Matched MeSH terms: Imatinib Mesylate/therapeutic use*
  10. Jamali NS, Raja Sabudin RZA, Alauddin H, Ithnin A, Tumian NR, Jalil N, et al.
    Malays J Pathol, 2021 Apr;43(1):63-68.
    PMID: 33903307
    INTRODUCTION: The advent of BCR-ABL1-targeted therapy with the tyrosine kinase inhibitor (TKI), for example, imatinib and nilotinib, marked a turning point in the therapy of chronic myeloid leukaemia (CML). However, a substantial proportion of patients experience primary or secondary disease resistance to TKI. There are multifactorial causes contributing to the treatment failure of which BCR-ABL1 kinase domain mutation being the most common. Here, we describe a case of a CML patient with H396P mutation following treatment with nilotinib.

    CASE: A 60-year-old woman presented with abdominal discomfort and hyperleukocytosis. She was diagnosed as CML in the chronic phase with positive BCR-ABL1 transcripts. Due to the failure to obtain an optimal response with imatinib treatment, it was switched to nilotinib. She responded well to nilotinib initially and achieved complete haematological and cytogenetic responses, with undetectable BCR-ABL1 transcripts. However, in 4 years she developed molecular relapse. Mutation analysis which was done 70 months after commencement of nilotinib showed the presence of BCRABL1 kinase domain mutation with nucleotide substitution at position 1187 from Histidine(H) to Proline(P) (H396P). Currently, she is on nilotinib 400mg twice daily. Her latest molecular analysis showed the presence of residual BCR-ABL1 transcripts at 0.22%.

    DISCUSSION/CONCLUSION: This case illustrates the importance of BCR-ABL1 mutation analysis in CML patients with persistent BCR-ABL1 positivity in spite of treatment. Early detection and identification of the type of BCRABL1 mutation are important to guide appropriate treatment options as different mutation will have different sensitivity to TKI.

    Matched MeSH terms: Imatinib Mesylate
  11. Nassar I, Pasupati T, Judson JP, Segarra I
    Malays J Pathol, 2010 Jun;32(1):1-11.
    PMID: 20614720 MyJurnal
    Imatinib, a selective tyrosine kinase inhibitor, is the first line treatment against chronic myelogenous leukaemia (CML) and gastrointestinal stromal tumors (GIST). Several fatal cases have been associated with imatinib hepatotoxicity. Acetaminophen, an over-the-counter analgesic, anti-pyretic drug, which can cause hepatotoxicity, is commonly used in cancer pain management. We assessed renal and hepatic toxicity after imatinib and acetaminophen co-administration in a preclinical model. Four groups of male ICR mice (30-35 g) were fasted overnight and administered either saline solution orally (baseline control), imatinib 100 mg/kg orally (control), acetaminophen 700 mg/kg intraperitoneally (positive control) or co-administered imatinib 100 mg/kg orally and acetaminophen 700 mg/kg intraperitoneally (study group), and sacrificed at 15 min, 30 min, 1 h, 2 h, 4 h and 6 h post-administration (n = 4 per time point). The liver and kidneys were harvested for histopathology assessment. The liver showed reversible cell damage like feathery degeneration, microvesicular fatty change, sinusoidal congestion and pyknosis, when imatinib or acetaminophen were administered separately. The damage increased gradually with time, peaked at 2 h but resolved by 4 h. When both drugs were administered concurrently, the liver showed irreversible damage (cytolysis, karyolysis and karyorrhexis) which did not resolve by 6 h. Very minor renal changes were observed. Acetaminophen and imatinib co-administration increased hepatoxicity which become irreversible, probably due to shared P450 biotransformation pathways and transporters in the liver.
    Matched MeSH terms: Imatinib Mesylate
  12. Soo GW, Law JH, Kan E, Tan SY, Lim WY, Chay G, et al.
    Anticancer Drugs, 2010 Aug;21(7):695-703.
    PMID: 20629201
    Imatinib, a selective inhibitor of c-KIT and Bcr-Abl tyrosine kinases, approved for the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors, shows further therapeutic potential for gliomas, glioblastoma, renal cell carcinoma, autoimmune nephritis and other neoplasms. It is metabolized by CYP3A4, is highly bound to alpha-1-acid glycoprotein and is a P-glycoprotein substrate limiting its brain distribution. We assess imatinib's protein binding interaction with primaquine, which also binds to alpha-1-acid glycoprotein, and its metabolic interaction with ketoconazole, which is a CYP3A4 inhibitor, on its pharmacokinetics and biodistribution. Male ICR mice, 9-12 weeks old were given imatinib PO (50 mg/kg) alone or co-administered with primaquine (12.5 mg/kg), ketoconazole (50 mg/kg) or both, and imatinib concentration in the plasma, kidney, liver and brain was measured at prescheduled time points by HPLC. Noncompartmental pharmacokinetic parameters were estimated. Primaquine increased 1.6-fold plasma AUC(0)--> infinity, C(Max) decreased 24%, T(Max) halved and t(1/2) and mean residence time were longer. Ketoconazole increased plasma AUC(0)-->infinity 64% and doubled the C(Max), but this dose did not affect t(1/2) or mean residence time. When ketoconazole and primaquine were co-administered, imatinib AUC(0)-->infinity and C(Max) increased 32 and 35%, respectively. Ketoconazole did not change imatinib's distribution efficiency in the liver and kidney, primaquine increased it two-fold and it was larger when both the drugs were co-administered with imatinib. Ketoconazole did not change brain penetration but primaquine increased it approximately three-fold. Ketoconazole and primaquine affect imatinib clearance, bioavailability and distribution pattern, which could improve the treatment of renal and brain tumors, but also increase toxicity. This would warrant hepatic and renal functions monitoring.
    Matched MeSH terms: Imatinib Mesylate
  13. Moo KS, Radhakrishnan S, Teoh M, Narayanan P, Bukhari NI, Segarra I
    Yao Xue Xue Bao, 2010 Jul;45(7):901-8.
    PMID: 20931790
    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
    Matched MeSH terms: Imatinib Mesylate
  14. Teoh M, Narayanan P, Moo KS, Radhakrisman S, Pillappan R, Bukhari NI, et al.
    Pak J Pharm Sci, 2010 Jan;23(1):35-41.
    PMID: 20067864
    Imatinib inhibits Bcr-Abl, c-KIT and PDGFR kinases. It is approved for the treatment of chronic myeloid leukemia (CML), gastrointestinal stromal tumors (GIST) and has further therapeutic potential. Male ICR mice were given imatinib PO (50 or 25 mg/kg, 5 doses every 2 h); euthanized 2 h after the last dose administration; plasma, liver, brain, spleen and kidney were collected and imatinib concentration measured by an optimized HPLC method for quantification in tissues. Methanol (1:1 v/v plasma) and pH 4, 40:30:30 (v/v/v) water-methanol-acetonitrile at 5 ml/g (brain) and 10 ml/g (spleen, kidney, liver) ratio was added to the samples, homogenized, sonicated, centrifuged (15,000 rpm, 5 min, 2 degrees C) and the supernatant injected into an Inertsil CN-3 column (4.6 mm x 150 mm, 5 microm) using 64:35:1 (v/v/v) water-methanol-triethylamine (pH 4.8), flow rate 1 ml/min, 25 degrees C. Imatinib eluted at 7.5 min (268 nm). Linearity: 0.1-50 microg/ml; precision, accuracy, inter- and intra-day variability was within 15%. Recovery was above 95% (plasma), 80% (brain) and 90% (kidney, liver, spleen). Imatinib tissue concentrations were 6-8 folds higher than plasma except brain, where the ratio decreased from 0.24 to 0.08 suggesting limited brain penetration, likely due to blood brain barrier efflux transporters. The extensive distribution supports the expansion of therapeutic applications.
    Matched MeSH terms: Imatinib Mesylate
  15. Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, et al.
    J Pharm Pharmacol, 2011 Jul;63(7):918-25.
    PMID: 21635257 DOI: 10.1111/j.2042-7158.2011.01296.x
    The pharmacokinetic interaction between metronidazole, an antibiotic-antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
    Matched MeSH terms: Imatinib Mesylate
  16. Nassar I, Pasupati T, Judson JP, Segarra I
    Indian J Pharmacol, 2009 Aug;41(4):167-72.
    PMID: 20523867 DOI: 10.4103/0253-7613.56071
    PURPOSE: Imatinib is an efficacious drug against chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST) due to selective inhibition of c-KIT and BCR-ABL kinases. It presents almost complete bioavailability, is eliminated via P450-mediated metabolism and is well tolerated. However, a few severe drug-drug interactions have been reported in cancer patients taking acetaminophen.
    MATERIALS AND METHODS: Male ICR mice were given 100 mg/kg single dose of imatinib orally or imatinib 100 mg/kg (orally) coadministered with acetaminophen intraperitoneally (700 mg/kg). Mice were euthanized at predetermined time points, blood samples collected, and imatinib plasma concentration measured by HPLC.
    RESULTS: Imatinib AUC(0-12) was 27.04 +/- 0.38 mg.h/ml, C(max) was 7.21 +/- 0.99 mg/ml and elimination half-life was 2.3 hours. Acetaminophen affected the imatinib disposition profile: AUC(0-12) and C(max) decreased 56% and 59%, respectively and a longer half-life was observed (5.6 hours).
    CONCLUSIONS: The study shows a pharmacokinetic interaction between acetaminophen and imatinib which may render further human studies necessary if both drugs are administered concurrently to cancer patients.
    Matched MeSH terms: Imatinib Mesylate
  17. Wan Puteh SE, Mohamad Selamat E, Aizuddin AN, Tumian NR, Sathar J
    Asian Pac J Cancer Prev, 2022 Dec 01;23(12):4253-4260.
    PMID: 36580008 DOI: 10.31557/APJCP.2022.23.12.4253
    BACKGROUND: The burden of chronic myeloid leukaemia (CML) is increasing due to longer patient survival, better life expectancy of the general population, and increasing drug prices. Funding is one of the main concerns in the choice of CML medication used worldwide; thus, patient assistance programmes were introduced to ensure accessibility to affordable treatment. In this study, we evaluated CML drug distribution inequality in Malaysia through patient assistance programmes, using pharmaco-economics methods to evaluate CML treatment from the care provider's perspective.

    METHODS: Patients with CML were recruited from outpatient haematological clinics at the national centre of intervention and referral for haematological conditions and a public teaching hospital. The health-related quality of life or utility scores were derived using the EuroQol EQ-5D-5L questionnaire. Costing data were obtained from the Ministry of Health Malaysia Casemix MalaysianDRG. Imatinib and nilotinib drug costs were obtained from the administration of the participating hospitals and pharmaceutical company.

    RESULTS: Of the 221 respondents in this study, 68.8% were imatinib users. The total care provider cost for CML treatment was USD23,014.40 for imatinib and USD43,442.69 for nilotinib. The governmental financial assistance programme reduced the total care provider cost to USD13,693.51 for imatinib and USD19,193.45 for nilotinib. The quality-adjusted life years (QALYs) were 17.87 and 20.91 per imatinib and nilotinib user, respectively. Nilotinib had a higher drug cost than imatinib, yet its users had better life expectancy, utility score, and QALYs. Imatinib yielded the lowest cost per QALYs at USD766.29.

    CONCLUSION: Overall, imatinib is more cost-effective than nilotinib for treating CML in Malaysia from the care provider's perspective. The findings demonstrate the importance of cancer drug funding assistance for ensuring that the appropriate treatments are accessible and affordable and that patients with cancer use and benefit from such patient assistance programmes. To establish effective health expenditure, drug distribution inequality should be addressed.

    Matched MeSH terms: Imatinib Mesylate/therapeutic use
  18. Wahiduzzaman M, Pubalan M
    Dermatol. Online J., 2008;14(12):14.
    PMID: 19265627
    Imatinib mesylate--Gleevec (US), Glivec (worldwide), STI571--is an oral cancer drug that selectively inhibits several protein tyrosine kinases associated with human malignancy. The drug is used for the treatment of chronic myeloid leukemia, malignant gastrointestinal stromal tumors, and some other conditions. Treatment with imatinib is generally well tolerated but not without the risk of adverse effects. The risk of severe adverse events is low. Cutaneous side effects of this drug are common but muco-cutaneous lichenoid eruption with nail changes is very rare. We report a case of lichenoid eruption during imatinib therapy involving the skin, mucous membranes, and nails that cleared in spite of ongoing imatinib therapy.
    Matched MeSH terms: Imatinib Mesylate
  19. Kadivar A, Kamalidehghan B, Javar HA, Davoudi ET, Zaharuddin ND, Sabeti B, et al.
    PLoS One, 2015;10(6):e0126874.
    PMID: 26035710 DOI: 10.1371/journal.pone.0126874
    Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.
    Matched MeSH terms: Imatinib Mesylate/blood; Imatinib Mesylate/pharmacokinetics*; Imatinib Mesylate/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links