Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL
    Food Chem, 2021 Oct 01;358:129914.
    PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914
    A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
    Matched MeSH terms: Chromatography, Ion Exchange/instrumentation*; Chromatography, Ion Exchange/methods*
  2. Show PL, Ooi CW, Song CP, Chai WS, Lin GT, Liu BL, et al.
    Food Chem, 2021 May 01;343:128543.
    PMID: 33187742 DOI: 10.1016/j.foodchem.2020.128543
    Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.
    Matched MeSH terms: Chromatography, Ion Exchange/methods*
  3. Chai TT, Xiao J, Mohana Dass S, Teoh JY, Ee KY, Ng WJ, et al.
    Food Chem, 2021 Mar 15;340:127876.
    PMID: 32871354 DOI: 10.1016/j.foodchem.2020.127876
    Jackfruit is a sweet tropical fruit with very pleasant aroma, and the ripe seeds are edible. In this study, jackfruit seed proteins were isolated and subjected to trypsin digestion. The resultant protein hydrolysate was then subjected to antioxidant assay-guided purification, using centrifugal filtration, C18 reverse-phase and strong cation exchange (SCX) fractionations. The purified SCX fraction was further analyzed by de novo peptide sequencing, and two peptide sequences were identified and synthesized. Peptide JFS-2 (VGPWQK) was detected with antioxidant potential, with EC50 value comparable to that of commercial GSH antioxidant peptide. Additionally, the identified peptides were tested with protein protection potential, in an albumin protein denaturation inhibitory assay. Concurrently, we also investigated the pH, temperature, and gastrointestinal-digestion stability profiles for the identified peptide. With further research efforts, the identified peptides could potentially be developed into preservative agent for protein-rich food systems or as health-promoting diet supplements.
    Matched MeSH terms: Chromatography, Ion Exchange
  4. Chang SH
    Carbohydr Polym, 2021 Mar 15;256:117423.
    PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423
    Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
    Matched MeSH terms: Chromatography, Ion Exchange
  5. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
    Matched MeSH terms: Ion Exchange
  6. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Ion Exchange
  7. Song CP, Ooi CW, Tey BT, Lu CX, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Dec 01;164:4455-4465.
    PMID: 32937154 DOI: 10.1016/j.ijbiomac.2020.09.051
    A stirred fluidized bed (SFB) ion exchange chromatography was successfully applied in the direct recovery of recombinant enhanced green fluorescent protein (EGFP) from the unclarified Escherichia coli homogenate. Optimal conditions for both adsorption and elution processes were determined from the packed-bed adsorption systems conducted at a small scale using the clarified cell homogenate. The maximal adsorption capacity and dissociation constant for EGFP-adsorbent complex were found to be 6.3 mg/mL and 1.3 × 10-3 mg/mL, respectively. In an optimal elution of EGFP with 0.2 M of NaCl solution (pH 9) and at 200 cm/h, the recovery percent of the EGFP was approximately 93%. The performances of SFB chromatography for direct recovery of EGFP was also evaluated under different loading volumes (50-200 mL) of crude cell homogenate. The single-step purification of EGFP by SFB recorded in a high yield (95-98%) and a satisfactory purification factor (~3 folds) of EGFP from the cell homogenate at 200 rpm of rotating speed.
    Matched MeSH terms: Chromatography, Ion Exchange/instrumentation; Chromatography, Ion Exchange/methods*
  8. Revathi M, Sivagaami Sundari G, Ahmed Basha C, Alam M, Sagadevan S, Ahmad N
    J Nanosci Nanotechnol, 2020 10 01;20(10):6547-6554.
    PMID: 32385012 DOI: 10.1166/jnn.2020.18562
    This investigation aims at the reclamation of Cr(VI) from synthetic electroplating industrial effluent by electroextraction process namely electrochemical ion exchange (EIX). An electrochemical ion exchange reactor of desired dimensions was fabricated with the help of ion-permeable membranes, stainless steel cathode and PbO₂ coated Ti expanded mesh anode. The performance of the reactor was studied in batch recirculation mode, continuous flow mode at different experimental conditions. The influence of various experimental factors, for instance, initial metal ion concentration (20, 300, 1000 mg/L of Cr(VI)), applied voltages (2.5 V, 5 V, 7.5 V, 10 V) and flow rates of the process stream (2, 4, 6, 8, 10, 12 and 14 ml/min) on removal/reclamation efficiency was deliberated. For comparison purposes, an electrodialysis process was conducted at the same optimal conditions. It was found that the EIX process with three compartments has more removal efficiency at optimum experimental conditions than the electrodialysis process. The continuous flow process of the reactor with 300 mg/L of Cr(VI) as inlet concentration has studied to predict the breakeven point of the reactor. It was noted that Cr(VI) ion concentration in the treated wastewater is almost zero up to the discharge of 20 liters of treated rinse water.
    Matched MeSH terms: Ion Exchange
  9. Amirmoshiri M, Zhang L, Puerto MC, Tewari RD, Bahrim RZBK, Farajzadeh R, et al.
    Langmuir, 2020 Sep 01.
    PMID: 32870010 DOI: 10.1021/acs.langmuir.0c01521
    We investigate the dynamic adsorption of anionic surfactant C14 - 16 alpha olefin sulfonate on Berea sandstone cores with different surface wettability and redox states under high temperature that represents reservoir conditions. Surfactant adsorption levels are determined by analyzing the effluent history data with a dynamic adsorption model assuming Langmuir isotherm. A variety of analyses, including surface chemistry, ionic composition, and chromatography, is performed. It is found that the surfactant breakthrough in the neutral-wet core is delayed more compared to that in the water-wet core because the deposited crude oil components on the rock surface increase the surfactant adsorption via hydrophobic interactions. As the surfactant adsorption is satisfied, the crude oil components are solubilized by surfactant micelles and some of the adsorbed surfactants are released from the rock surface. The released surfactant dissolves in the flowing surfactant solution, thereby resulting in an overshoot of the produced surfactant concentration with respect to the injection value. Furthermore, under water-wet conditions, changing the surface redox potential from an oxidized to a reduced state decreases the surfactant adsorption level by 40%. We find that the decrease in surfactant adsorption is caused not only by removing the iron oxide but also by changing the calcium concentration after the core restoration process (calcite dissolution and ion exchange as a result of using EDTA). Findings from this study suggest that laboratory surfactant adsorption tests need to be conducted by considering the wettability and redox state of the rock surface while recognizing how core restoration methods could significantly alter the ionic composition during surfactant flooding.
    Matched MeSH terms: Ion Exchange
  10. Moradpour N, Karimova M, Pourafshary P, Zivar D
    ACS Omega, 2020 Jul 28;5(29):18155-18167.
    PMID: 32743190 DOI: 10.1021/acsomega.0c01766
    The results of many previous studies on low salinity/controlled ions water (CIW) flooding suggest that future laboratory and modeling investigations are required to comprehensively understand and interpret the achieved observations. In this work, the aim is co-optimization of the length of the injected slug and soaking time in the CIW flooding process. Furthermore, the possibility of the occurrence of several governing mechanisms is studied. Therefore, the experimental results were utilized to develop a compositional model, using CMG GEM software, in order to obtain the relative permeability curves by history matching. It was concluded that CIW slug injection, concentrated in the potential-determining ion, can increase oil recovery under a multi ion exchange (MIE) mechanism. The wettability of the carbonate rocks was changed from a mixed or oil wet state toward more water wetness. However, there is a CIW slug length, beyond which extending the length does not significantly improve the rock wettability, and consequently, the oil production, which is known as the optimum slug size. This implies that the optimization of the injection process, by minimizing the slug size, can decrease the need for the CIW supply, therefore lowering the process expenditure. Moreover, if the exposure time of the rock and CIW is increased (soaking), a higher level of ion substitution is probable, leading to more oil detachment and production. Rock dissolution/precipitation (leading to a pH change) was found to have a negligible contribution.
    Matched MeSH terms: Ion Exchange
  11. Chong, Saw Peng, Norellia Bahari, Mustapha Akil, Norazlina Noordin
    MyJurnal
    There are many methods to separate or purify the rebaudioside A compound from Stevia rebaudiana extract. However, the ion-exchange chromatography using macroporous resin is still the most popular among those methods. The separation of rebaudioside A from stevia crude extract by macroporous resin AB-8 was optimised in this adsorption separation study. This approach was applied to evaluate the influence of four factors such as the adsorption temperature, desorption time, elution solution ratio, and adsorption volume on rebaudioside A yield of the purified stevia extract. The results showed that the low polarity resin AB-8 is able to separate rebaudioside A from stevia extract with 0.601 in yield compared to the high polarity resin HPD 600 with 0.204 in yield used in Anvari and Khayati study. The best conditions for rebaudioside A separation by macroporous resin AB-8 were at 35°C of adsorption temperature, 30 min of desorption time, elution solution ratio 2:1, and 50 mL of adsorption volume.
    Matched MeSH terms: Chromatography, Ion Exchange
  12. Rajendiran T, Sabarathinam C, Chandrasekar T, Keesari T, Senapathi V, Sivaraman P, et al.
    Environ Sci Pollut Res Int, 2019 Oct;26(28):29173-29190.
    PMID: 31392611 DOI: 10.1007/s11356-019-05962-w
    This study considered the temporal variations in rainfall and water level patterns as governing factors, which influence the geochemical process of coastal aquifer around Pondicherry, South India. Rainfall and water level data were collected from 2006 to 2016, which showed that the amount of rainfall from 2006 to 2011 was higher than that of 2011 to 2016. To understand the geochemical process governing groundwater, samples were collected during 2006 (n = 54), followed by 2011 (n = 93), and during 2016 (n = 63) as part of continuous observation. The major ions and stable isotopes (δ18O and δD) were analyzed in the samples to determine the geochemical variations. The predominant types were noted as Na-HCO3 and Na-Cl; Ca-HCO3 and Ca-Mg-Cl; and Na-Cl and Ca-Mg-Cl in 2006, 2011, and 2016, respectively. Saturation states of sulfate and carbonate minerals were compared for the study periods and it indicates that the saturation index (SI) values were increased from 2006 to 2011, but decreased from 2011 to 2016. PHREEQC inverse modeling revealed the predominance for the dissolution and leaching of carbonate minerals during increased rainy periods, and the increase of halite saturation during lesser rainfall period. AQUACHEM mixing studies suggested that geochemical signatures of 2006 and 2011 were preserved in samples of 2016 in different proportions. Considering the major factors, the main processes prevailing in the study area were inferred to be dissolution and leaching during 2006~2011 years and seawater intrusion along with ion exchange during 2011~2016 years. In all these periods of study, anthropogenic impact was also identified in the groundwater samples. Hence, this study revealed that the rainfall and water level gave a significant variation in the geochemical process of groundwater in the coastal aquifer system.
    Matched MeSH terms: Ion Exchange
  13. Xia A, Wei P, Sun C, Show PL, Huang Y, Fu Q
    Bioresour Technol, 2019 Sep;288:121560.
    PMID: 31170688 DOI: 10.1016/j.biortech.2019.121560
    An advanced electrodialysis fermentation system was set up to remove ammonium during hydrogen fermentation. When the voltage was increased from 0 to 6 V, the average ammonium removal rate was improved from 8.7 to 31.1 mg/L/h at an initial ammonium concentration of 3000 mg/L. A model based on the Nernst-Plank equation and porous media properties of ion exchange membranes was successfully implemented to predict the ammonium removal performance. When such a system was fed with synthetic wastewater at an ammonium concentration of 3000 mg/L for hydrogen fermentation, a significant increase in specific hydrogen yield was observed in the experiment group at 4 V. Specific hydrogen yield was 225.0 mL/g glucose, this value is 47.9% higher than the control. Moreover, ammonium concentration in experiment group was reduced to 701.6 mg/L at 72 h when voltage was set at 4 V, which is 63.7% lower than that in 0 V experiment group.
    Matched MeSH terms: Ion Exchange
  14. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA
    Protein Expr Purif, 2019 03;155:35-42.
    PMID: 30352276 DOI: 10.1016/j.pep.2018.10.008
    Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.
    Matched MeSH terms: Chromatography, Ion Exchange
  15. El-Deeb NM, El-Adawi HI, El-Wahab AEA, Haddad AM, El Enshasy HA, He YW, et al.
    Front Cell Dev Biol, 2019;7:165.
    PMID: 31457012 DOI: 10.3389/fcell.2019.00165
    Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.
    Matched MeSH terms: Chromatography, Ion Exchange
  16. Abdul Raman AA, Tan HW, Buthiyappan A
    Front Chem, 2019;7:774.
    PMID: 31799239 DOI: 10.3389/fchem.2019.00774
    For every ton of biodiesel produced, about 100 kg of glycerol is also generated as a by-product. The traditional method of removing glycerol is mainly by gravity separation or centrifugation. This method generates crude glycerol, which may still contain impurities such as methanol, oil, soap, salt, and other organic materials at ppm levels. The effective usage of crude glycerol is important to improve the economic sustainability of the biodiesel industry while reducing the environmental impacts caused by the generated waste. The application and value of crude glycerol can be enhanced if these impurities are removed or minimized. Thus, it is important to develop a method which can increase the economic and applicable value of crude glycerol. Therefore, in the present study, the dual step purification method comprised of acidification and ion exchange techniques has been used to purify the crude glycerol and convert it into higher-value products. The acidification process started with the pH adjustment of the crude glycerol, using phosphoric acid to convert soap into fatty acid and salts. Then, the pretreated glycerol was further purified by ion exchange with a strong cation H+ resin. Gas chromatography (GC) was used to analyze both crude and purified glycerol and expressed as the weight percentage of glycerol content. A maximum glycerol purity of 98.2% was obtained after the dual step purification method at the optimized conditions of 60% of solvent, the flow rate of 15 mL/min and 40 g of resin. Further, the glycerol content measured being within the accepted amount of BS 2621:1979. Therefore, this study has proven that the proposed crude glycerol purification process is effective in improving the glycerol purity and could enhance the applicability of glycerol in producing value-added products which bring new revenue to the biodiesel industry.
    Matched MeSH terms: Ion Exchange
  17. Ng HW, Lee MFX, Chua GK, Gan BK, Tan WS, Ooi CW, et al.
    J Sep Sci, 2018 May;41(10):2119-2129.
    PMID: 29427396 DOI: 10.1002/jssc.201700823
    Hepatitis B virus-like particles expressed in Escherichia coli were purified using anion exchange adsorbents grafted with polymer poly(oligo(ethylene glycol) methacrylate) in flow-through chromatography mode. The virus-like particles were selectively excluded, while the relatively smaller sized host cell proteins were absorbed. The exclusion of virus-like particles was governed by the accessibility of binding sites (the size of adsorbents and the charge of grafted dextran chains) as well as the architecture (branch-chain length) of the grafted polymer. The branch-chain length of grafted polymer was altered by changing the type of monomers used. The larger adsorbent (90 μm) had an approximately twofold increase in the flow-through recovery, as compared to the smaller adsorbent (30 μm). Generally, polymer-grafted adsorbents improved the exclusion of the virus-like particles. Overall, the middle branch-chain length polymer grafted on larger adsorbent showed optimal performance at 92% flow-through recovery with a purification factor of 1.53. A comparative study between the adsorbent with dextran grafts and the polymer-grafted adsorbent showed that a better exclusion of virus-like particles was achieved with the absorbent grafted with inert polymer. The grafted polymer was also shown to reduce strong interaction between binding sites and virus-like particles, which preserved the particles' structure.
    Matched MeSH terms: Chromatography, Ion Exchange
  18. Abdullah, M.A.A., Mamat, M., Rusli, S.A., Kassim, A.A.
    ASM Science Journal, 2018;11(101):96-104.
    MyJurnal
    Considering its excellent thermal stability, alkyl phosphonium surfactant: triisobutyl(methyl)phosphonium
    (TIBMP) was used in this research as an intercalant for surface
    modification of Na+-MMT via ion exchange process forming organomontmorillonite
    (OMMT). The OMMT was then used as filler in poly(methyl methacrylate) (PMMA) via
    melt intercalation technique. OMMT decomposed at a higher temperature than commercial
    alkyammonium modified MMT. Exfoliated and intercalated types of nanocomposites
    are obtained from PMMA/OMMTs at low and high content of OMMT loading, depending
    on the space of those clay platelets had to disperse in PMMA. The ability of OMMT to
    carry a certain load applied in PMMA matrix enhances the tensile strength in all composites.
    TIBMP are compatible with PMMA matrix, and significantly improves the tensile
    properties of PMMA composites.
    Matched MeSH terms: Ion Exchange
  19. Che Hussian CHA, Raja Abd Rahman RNZ, Thean Chor AL, Salleh AB, Mohamad Ali MS
    PeerJ, 2018;6:e5833.
    PMID: 30479887 DOI: 10.7717/peerj.5833
    T1 Lipase is a thermostable secretary protein of Geobacillus zalihae strain previously expressed in a prokaryotic system and purified using three-step purification: affinity 1, affinity 2, and ion exchange chromatography (IEX). This approach is time consuming and offers low purity and recovery yield. In order to enhance the purification strategy of T1 lipase, affinity 2 was removed so that after affinity 1, the cleaved Glutathione S-transferase (GST) and matured T1 lipase could be directly separated through IEX. Therefore, a rational design of GST isoelectric point (pI) was implemented by prediction using ExPASy software in order to enhance the differences of pI values between GST and matured T1 lipase. Site-directed mutagenesis at two locations flanking the downstream region of GST sequences (H215R and G213R) was successfully performed. Double point mutations changed the charge on GST from 6.10 to 6.53. The purified lipase from the new construct GST tag mutant-T1 was successfully purified using two steps of purification with 6,849 U/mg of lipase specific activity, 33% yield, and a 44-fold increase in purification. Hence, the increment of the pI values in the GST tag fusion T1 lipase resulted in a successful direct separation through IEX and lead to successful purification.
    Matched MeSH terms: Chromatography, Ion Exchange
  20. Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM
    Int J Med Mushrooms, 2017;19(8):675-684.
    PMID: 29199567 DOI: 10.1615/IntJMedMushrooms.2017021274
    The growth and lectin production of Ganoderma applanatum, a white rot fungus, was optimized in broth cultures. The fungus was found to have a higher growth rate and higher lectin activity when grown in a medium adjusted to pH 6.5 at 26°C under stationary conditions. Expression of lectin activity started in 5-day-old mycelial culture; maximum activity was expressed after the 15th day of incubation. Among the various carbon and nitrogen sources tested, the carbon source sucrose and the nitrogen source yeast extract support maximum growth and lectin production. Lectin from G. applanatum was purified by ammonium sulfate precipitation and ion exchange chromatography. The purified fraction revealed a single band with a molecular weight of 35.0 kDa. Moreover, carbohydrates such as mannitol, glucose, sucrose, maltose, mannose, galactose, sorbose, and fructose were found to inhibit the hemagglutinating activity of the lectin. The purified lectins from G. applanatum contain cytotoxic and proapoptotic activities against HT-29 colon adenocarcinoma cells.
    Matched MeSH terms: Chromatography, Ion Exchange
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links