Displaying all 7 publications

Abstract:
Sort:
  1. Chandrasekaran H, Govind SK, Panchadcharam C, Bathmanaban P, Raman K, Thergarajan G
    Parasit Vectors, 2014;7:469.
    PMID: 25358755 DOI: 10.1186/s13071-014-0469-7
    Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
    Matched MeSH terms: Lipid Metabolism/physiology*
  2. Shuib S, Nawi WN, Taha EM, Omar O, Kader AJ, Kalil MS, et al.
    ScientificWorldJournal, 2014;2014:173574.
    PMID: 24991637 DOI: 10.1155/2014/173574
    Strategic feeding of ammonium and metal ions (Mg(2+), Mn(2+), Fe(3+), Cu(2+), Ca(2+), Co(2+), and Zn(2+)) for enhanced GLA-rich lipid accumulation in C. bainieri 2A1 was established. When cultivated in nitrogen-limited medium, the fungus produced up to 30% lipid (g/g biomass) with 12.9% (g/g lipid) GLA. However, the accumulation of lipid stopped at 48 hours of cultivation although glucose was abundant. This event occurred in parallel to the diminishing activity of malic enzyme (ME), fatty acid synthase (FAS), and ATP citrate lyase (ACL) as well as the depletion of metal ions in the medium. Reinstatement of the enzymes activities was achieved by feeding of ammonium tartrate, but no increment in the lipid content was observed. However, increment in lipid content from 32% to 50% (g/g biomass) with 13.2% GLA was achieved when simultaneous feeding of ammonium, glucose, and metal ions was carried out. This showed that the cessation of lipid accumulation was caused by diminishing activities of the enzymes as well as depletion of the metal ions in the medium. Therefore, strategic feeding of ammonium and metal ions successfully reinstated enzymes activities and enhanced GLA-rich lipid accumulation in C. bainieri 2A1.
    Matched MeSH terms: Lipid Metabolism/physiology*
  3. Wahidin S, Idris A, Shaleh SR
    Bioresour Technol, 2013 Feb;129:7-11.
    PMID: 23232218 DOI: 10.1016/j.biortech.2012.11.032
    Illumination factors such as length of photoperiod and intensity can affect growth of microalgae and lipid content. In order to optimize microalgal growth in mass culture system and lipid content, the effects of light intensity and photoperiod cycle on the growth of the marine microalgae, Nannochloropsis sp. were studied in batch culture. Nannochloropsis sp. was grown aseptically for 9 days at three different light intensities (50, 100 and 200 μmol m(-2) s(-1)) and three different photoperiod cycles (24:0, 18:06 and 12:12 h light:dark) at 23 °C cultivation temperature. Under the light intensity of 100 μmol m(-2) s(-1) and photoperiod of 18 h light: 6 h dark cycle, Nannochloropsis sp. was found to grow favorably with a maximum cell concentration of 6.5×10(7) cells mL(-1), which corresponds to the growth rate of 0.339 d(-1) after 8 day cultivation and the lipid content was found to be 31.3%.
    Matched MeSH terms: Lipid Metabolism/physiology*
  4. Loy SL, KNS S, JM HJ
    Prev Med, 2013;57 Suppl:S41-4.
    PMID: 23219759 DOI: 10.1016/j.ypmed.2012.11.021
    This study aimed to evaluate changes in maternal adiposity and lipid profile and to correlate these parameters with Deoxyribonucleic acid (DNA) damage and total antioxidant capacity (TAC) levels among pregnant women.
    Matched MeSH terms: Lipid Metabolism/physiology
  5. Teh KY, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):438.
    PMID: 33432049 DOI: 10.1038/s41598-020-79950-3
    Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the 'trigger-threshold' for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of 'triggered' oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.
    Matched MeSH terms: Lipid Metabolism/physiology*
  6. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Rotimi SO, et al.
    PMID: 31339080 DOI: 10.2174/1871530319666190724114729
    BACKGROUND: Obesity is characterized by increased body fat and involves an imbalance between the synthesis and degradation of lipids.

    OBJECTIVE: The study aimed to investigate the effect of African walnuts (Tetracarpidium conophorum) on lipids storage and the regulatory enzymes of hepatic lipid metabolism in obese rats.

    METHODS: Nuts were extracted in ethanol (WE) and further separated to obtain the ethyl-acetate fraction (ET) and the residue (RES). These were administered orally to 3 groups of monosodium glutamate- obese rats (n = 6), respectively, for 6 weeks. Other groups in the study were: normal (NC), obese control (OC) and standard control (SC) which received orlistat. Hepatic total lipids, total phospholipids, triacylglycerol (TG), total cholesterol (TCHOL), 3-hydroxyl-3-methylglutaryl-CoA (HMG-CoA) reductase and paraoxonase were studied.

    RESULTS: Total lipids, TG and TCHOL which increased in OC compared to NC group, decreased. HMG-CoA reductase activity decreased in the 3 study groups relative to OC. Paraoxonase activity which decreased in OC was up-regulated, while the magnitude of hepatic cholesterol decreased from 94.32 % in OC to 52.19, 65.43 and 47.04 % with WE, ET and RES, respectively. Flavonoids, alkaloids, glycosides, tannins and saponins were detected in the nut. GC-MS analysis revealed 16, 18 and 10 volatile components in WE, ET and RES, respectively. Unsaturated fatty acids (linolenic acids: 33.33, 47.95 and 50.93 %, and α-linolenic acids: 25, 19.66 and 26.63 %) in WE, ET and RES, respectively, are the most abundant, and likely to be responsible for the observed activity.

    CONCLUSION: African walnuts can prevent hepatic lipid accumulation through reciprocal actions on HMG-CoA reductase and paraoxonase in obesity.

    Matched MeSH terms: Lipid Metabolism/physiology*
  7. Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, et al.
    Am J Physiol Endocrinol Metab, 2016 Apr 01;310(7):E550-64.
    PMID: 26814014 DOI: 10.1152/ajpendo.00384.2015
    Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
    Matched MeSH terms: Lipid Metabolism/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links