Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  2. Chung WH, Chiu CK, Wei Chan CY, Kwan MK
    Acta Orthop Traumatol Turc, 2020 Sep;54(5):561-564.
    PMID: 33155569 DOI: 10.5152/j.aott.2020.19144
    Growth hormone secreting pituitary tumor or gigantism has not been previously reported to be associated with rapid progression of scoliosis in the literature. However, there are some reports indicating scoliosis can be worsened by growth hormone therapy in children and adolescents. A 19-year-old boy was referred to our institution for the treatment of a right thoracolumbar scoliosis. The Cobb angle had worsened from 29° to 83° over two years' duration. He attained puberty at the age of 13. He had a previous history of slipped upper femoral epiphysis (SUFE), which was operated in 2015, with no clinical features of gigantism. Preoperative assessment was performed. He was diagnosed with growth hormone secreting pituitary macroadenoma by magnetic resonance imaging with a high serum level of insulin-like growth factor-I (IGF-I). Computed tomography (CT) of the pancreas showed a pancreatic endocrine tumor. The patient was later diagnosed with multiple endocrine neoplasia type 1 (MEN 1). He underwent endoscopic endonasal excision of the pituitary mass and distal pancreatectomy. This case indicates that growth hormone secreting pituitary macroadenoma could result in rapid progression of scoliosis.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  3. Tooyama I, Yanagisawa D, Taguchi H, Kato T, Hirao K, Shirai N, et al.
    Ageing Res Rev, 2016 09;30:85-94.
    PMID: 26772439 DOI: 10.1016/j.arr.2015.12.008
    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  4. Manan HA, Franz EA, Yusoff AN, Mukari SZ
    Aging Clin Exp Res, 2015 Feb;27(1):27-36.
    PMID: 24906677 DOI: 10.1007/s40520-014-0240-0
    In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  5. Viprakasit V, Ajlan A, Aydinok Y, Al Ebadi BAA, Dewedar H, Ibrahim AS, et al.
    Am J Hematol, 2018 06;93(6):E135-E137.
    PMID: 29473204 DOI: 10.1002/ajh.25075
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  6. Abdullah A, Mahmud MR, Maimunah A, Zulfiqar MA, Saim L, Mazlan R
    Ann Acad Med Singap, 2003 Jul;32(4):442-5.
    PMID: 12968546
    INTRODUCTION: Accurate preoperative imaging of the temporal bone in patients receiving cochlear implants is important. High resolution computed tomography (HRCT) and magnetic resonance (MR) imaging are the 2 preoperative imaging modalities that provide critical information on abnormalities of the otic capsule, pneumatisation of the mastoid, middle ear abnormalities, cochlear ducts patency and presence of cochlear nerve.

    MATERIALS AND METHODS: The HRCT and MR imaging in 46 cochlear implant patients in our department were reviewed.

    RESULTS: Majority of our patients [34 patients (73.9%)] showed normal HRCT of the temporal bone; 5 (10.9%) patients had labyrinthitis ossificans, 2 (4.3%) had Mondini's abnormality and 2 (4.3%) had middle ear effusion. One patient each had high jugular bulb, hypoplasia of the internal auditory canal and single cochlear cavity, respectively.

    CONCLUSION: The above findings contribute significantly to our surgical decisions regarding candidacy for surgery, side selection and surgical technique in cochlear implantation.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  7. Duc NM, Huy HQ, Nadarajan C, Keserci B
    Anticancer Res, 2020 May;40(5):2975-2980.
    PMID: 32366451 DOI: 10.21873/anticanres.14277
    BACKGROUND/AIM: Even though advanced magnetic resonance imaging (MRI) can effectively differentiate between medulloblastoma and ependymoma, it is not readily available throughout the world. This study aimed to investigate the role of simple quantified basic MRI sequences in the differentiation between medulloblastoma and ependymoma in children.

    PATIENTS AND METHODS: The institutional review board approved this prospective study. The brain MRI protocol, including sagittal T1-weighted, axial T2-weighted, coronal fluid-attenuated inversion recovery, and axial T1-weighted with contrast enhancement (T1WCE) sequences, was assessed in 26 patients divided into two groups: Medulloblastoma (n=22) and ependymoma (n=4). The quantified region of interest (ROI) values of tumors and their ratios to parenchyma were compared between the two groups. Multivariate logistic regression analysis was utilized to find significant factors influencing the differential diagnosis between the two groups. A generalized estimating equation (GEE) was used to create the predictive model for the discrimination of medulloblastoma from ependymoma.

    RESULTS: Multivariate logistic regression analysis showed that the T2- and T1WCE-ROI values of tumors and the ratios of T1WCE-ROI values to parenchyma were the most significant factors influencing the diagnosis between these two groups. GEE produced the model: y=exn/(1+exn) with predictor xn=-8.773+0.012x1 - 0.032x2 - 13.228x3, where x1 was the T2-weighted signal intensity (SI) of tumor, x2 the T1WCE SI of tumor, and x3 the T1WCE SI ratio of tumor to parenchyma. The sensitivity, specificity, and area under the curve of the GEE model were 77.3%, 100%, and 92%, respectively.

    CONCLUSION: The GEE predictive model can discriminate between medulloblastoma and ependymoma clinically. Further research should be performed to validate these findings.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  8. Cheah WH
    Asia Pac J Clin Oncol, 2023 Apr;19(2):e80-e88.
    PMID: 35437926 DOI: 10.1111/ajco.13782
    Rectal cancer is common and accounts for more than one-third of colorectal tumors. It is associated with significant morbidity and mortality. Previously computed tomography scan is the key imaging modality in preoperative assessment to detect local invasion and distant metastasis. However, the advent of magnetic resonance imaging (MRI) has aided in local staging and prognosticates the outcome of rectal tumor. Here, the author briefly explains why rectal MRI has a comprehensive role and provides a simple and easy way in reporting an MRI rectal carcinoma, even for a non-radiologist.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  9. Govindaraju R, Omar R, Rajagopalan R, Norlisah R, Kwan-Hoong N
    Auris Nasus Larynx, 2011 Aug;38(4):519-22.
    PMID: 21236610 DOI: 10.1016/j.anl.2010.12.006
    The higher field strength magnetic resonance imaging (MRI) such as 3 Tesla (T) and above generates noise that has potential detrimental effects on the hearing. Temporary threshold shifts following MRI examination have been reported for MRI with lower field strength. Such effect, however, have not been reported so far for a 3T MRI. We report a case that exemplifies the possible detrimental effects of a 3 T MRI generated noise on the auditory system. Our patient underwent investigation of his chronic backache in a 3 T MRI unit and developed hearing loss and tinnitus post-MRI examination. Hearing assessment was done using pure tone audiogram, distortion product otoacoustic emission (DPOAE) and brainstem electrical response audiometry (BERA) which revealed a unilateral sensorineural hearing loss which recovered within 3 days. However the tinnitus persisted. This is possibly a case of temporary threshold shift following noise exposure. However a sudden sensorineural hearing loss remains the other possibility.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  10. Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM
    Australas Phys Eng Sci Med, 2016 Jun;39(2):363-78.
    PMID: 27043850 DOI: 10.1007/s13246-016-0438-x
    Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  11. Abdullah H, Abdul Wahab N, Abu Bakar K
    BMJ Case Rep, 2017 Jun 13;2017.
    PMID: 28611167 DOI: 10.1136/bcr-2017-219793
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  12. Farzan A, Mashohor S, Ramli AR, Mahmud R
    Behav Brain Res, 2015 Sep 1;290:124-30.
    PMID: 25889456 DOI: 10.1016/j.bbr.2015.04.010
    Boosting accuracy in automatically discriminating patients with Alzheimer's disease (AD) and normal controls (NC), based on multidimensional classification of longitudinal whole brain atrophy rates and their intermediate counterparts in analyzing magnetic resonance images (MRI).
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  13. Yin LK, Rajeswari M
    Biomed Mater Eng, 2014;24(6):3333-41.
    PMID: 25227043 DOI: 10.3233/BME-141156
    To segment an image using the random walks algorithm; users are often required to initialize the approximate locations of the objects and background in the image. Due to its segmenting model that is mainly reflected by the relationship among the neighborhood pixels and its boundary conditions, random walks algorithm has made itself sensitive to the inputs of the seeds. Instead of considering the relationship between the neighborhood pixels solely, an attempt has been made to modify the weighting function that accounts for the intensity changes between the neighborhood nodes. Local affiliation within the defined neighborhood region of the two nodes is taken into consideration by incorporating an extra penalty term into the weighting function. Besides that, to better segment images, particularly medical images with texture features, GLCM variance is incorporated into the weighting function through kernel density estimation (KDE). The probability density of each pixel belonging to the initialized seeds is estimated and integrated into the weighting function. To test the performance of the proposed weighting model, several medical images that mainly made up of 174-brain tumor images are experimented. These experiments establish that the proposed method produces better segmentation results than the original random walks.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  14. Hong-Seng G, Sayuti KA, Karim AH
    Biomed Mater Eng, 2017;28(2):75-85.
    PMID: 28372262 DOI: 10.3233/BME-171658
    BACKGROUND: Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images.

    OBJECTIVES: The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method.

    METHODS: Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories.

    RESULTS: A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15).

    CONCLUSION: The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  15. Bilal M, Anis H, Khan N, Qureshi I, Shah J, Kadir KA
    Biomed Res Int, 2019;2019:6139785.
    PMID: 31119178 DOI: 10.1155/2019/6139785
    Background: Motion is a major source of blurring and ghosting in recovered MR images. It is more challenging in Dynamic Contrast Enhancement (DCE) MRI because motion effects and rapid intensity changes in contrast agent are difficult to distinguish from each other.

    Material and Methods: In this study, we have introduced a new technique to reduce the motion artifacts, based on data binning and low rank plus sparse (L+S) reconstruction method for DCE MRI. For Data binning, radial k-space data is acquired continuously using the golden-angle radial sampling pattern and grouped into various motion states or bins. The respiratory signal for binning is extracted directly from radially acquired k-space data. A compressed sensing- (CS-) based L+S matrix decomposition model is then used to reconstruct motion sorted DCE MR images. Undersampled free breathing 3D liver and abdominal DCE MR data sets are used to validate the proposed technique.

    Results: The performance of the technique is compared with conventional L+S decomposition qualitatively along with the image sharpness and structural similarity index. Recovered images are visually sharper and have better similarity with reference images.

    Conclusion: L+S decomposition provides improved MR images with data binning as preprocessing step in free breathing scenario. Data binning resolves the respiratory motion by dividing different respiratory positions in multiple bins. It also differentiates the respiratory motion and contrast agent (CA) variations. MR images recovered for each bin are better as compared to the method without data binning.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  16. Heberle LC, Al Tawari AA, Ramadan DG, Ibrahim JK
    Brain Dev, 2006 Jun;28(5):329-31.
    PMID: 16376514
    Ethylmalonic encephalopathy is a rare metabolic disease presenting in infancy with developmental delay, acrocyanosis, petechiae, chronic diarrhea and early death. The biochemical characteristics of this autosomal recessive disease are urinary organic acid abnormalities. Recently it has been found to be caused by mutations in the ETHE1 gene, located on Ch19q13. Only about 30 patients have been reported, and we describe two additional cases. The first patient showed a typical clinical picture and biochemical abnormalities, with additional atypical clinical features. Neuroimaging studies showed extensive changes. A new homozygous mutation in exon 3 of the ETHE1 gene was found. The second patient was not investigated genetically; however besides the typical clinical picture and biochemical profile he was found to have cytochrome C oxidase deficiency.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  17. Powell R, Ahmad M, Gilbert FJ, Brian D, Johnston M
    Br J Health Psychol, 2015 Sep;20(3):449-65.
    PMID: 25639980 DOI: 10.1111/bjhp.12132
    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  18. Koh KL, Sonny Teo KS, Halim SA, Wan Hitam WH
    Can J Ophthalmol, 2019 04;54(2):e66-e69.
    PMID: 30975364 DOI: 10.1016/j.jcjo.2018.06.022
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  19. Piaw CS, Kiam OT, Rapaee A, Khoon LC, Bang LH, Ling CW, et al.
    Cardiovasc Intervent Radiol, 2006 Mar-Apr;29(2):230-4.
    PMID: 16252078
    Transesophageal echocardiography (TEE) is a trusted method of sizing atrial septal defect (ASD) prior to percutaneous closure but is invasive, uncomfortable, and may carry a small risk of morbidity and mortality. Magnetic resonance imaging (MRI) may be useful non-invasive alternative in such patients who refuse or are unable to tolerate TEE and may provide additional information on the shape of the A0SD.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  20. El Beltagi AH, El-Nil H, Alrabiah L, El Shammari N
    Clin Imaging, 2012 Mar-Apr;36(2):142-5.
    PMID: 22370135 DOI: 10.1016/j.clinimag.2011.07.004
    Leprosy is a granulomatous disease primarily affecting the skin and peripheral nerves caused by Mycobacterium leprae, but also significantly involving sinonasal cavities and cranial nerves. It continues to be a significant public health problem, and despite multidrug therapy, it can still cause significant morbidity. The awareness of cranial nerve, intracranial and orbital apex involvement as in our case is important for appropriate treatment measures.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links