Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Shamsudin S, Selamat J, Sanny M, Jambari NN, Sukor R, Praveena SM, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858787 DOI: 10.3390/molecules25173874
    Heterocyclic amines (HCAs) are carcinogenic food toxicants formed in cooked meats, which may increase the risk of cancer development in humans. Therefore, in this study, the effect of stingless bee honey from different botanical origins on the formation of HCAs in grilled beef satay was investigated. HCAs concentration in grilled beef satay was determined by using high performance liquid chromatography (HPLC). In total, six of the most toxigenic HCAs representing aminoimidazo-azaarenes (AIAs) (MeIQx, 4,8-DiMeIQx, and PhIP) and amino carbolines (norharman, harman, and AαC) groups were identified in all the beef samples investigated. A significant reduction in HCAs was observed in grilled beef marinated in honey as compared to beef samples marinated in table sugar (control), in which the reduction of 95.14%, 88.45%, 85.65%, and 57.22% was observed in gelam, starfruit, acacia, and Apis honey marinades, respectively. According to the partial least squares regression (PLS) model, the inhibition of HCAs in grilled beef was shown to be significantly correlated to the antioxidant activity (IC50) of the honey samples. Therefore, the results of this study revealed that the addition of stingless bee honey could play an important role in reducing HCAs in grilled beef.
    Matched MeSH terms: Meat/analysis*
  2. Rohman A, Windarsih A
    Int J Mol Sci, 2020 Jul 21;21(14).
    PMID: 32708254 DOI: 10.3390/ijms21145155
    Halal is an Arabic term used to describe any components allowed to be used in any products by Muslim communities. Halal food and halal pharmaceuticals are any food and pharmaceuticals which are safe and allowed to be consumed according to Islamic law (Shariah). Currently, in line with halal awareness, some Muslim countries such as Indonesia, Malaysia, and Middle East regions have developed some standards and regulations on halal products and halal certification. Among non-halal components, the presence of pig derivatives (lard, pork, and porcine gelatin) along with other non-halal meats (rat meat, wild boar meat, and dog meat) is typically found in food and pharmaceutical products. This review updates the recent application of molecular spectroscopy, including ultraviolet-visible, infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies, in combination with chemometrics of multivariate analysis, for analysis of non-halal components in food and pharmaceutical products. The combination of molecular spectroscopic-based techniques and chemometrics offers fast and reliable methods for screening the presence of non-halal components of pig derivatives and non-halal meats in food and pharmaceutical products.
    Matched MeSH terms: Meat/analysis*
  3. Maritha V, Harlina PW, Musfiroh I, Gazzali AM, Muchtaridi M
    Molecules, 2022 Nov 04;27(21).
    PMID: 36364396 DOI: 10.3390/molecules27217571
    The halal status of meat products is an important factor being considered by many parties, especially Muslims. Analytical methods that have good specificity for the authentication of halal meat products are important as quality assurance to consumers. Metabolomic and lipidomic are two useful strategies in distinguishing halal and non-halal meat. Metabolomic and lipidomic analysis produce a large amount of data, thus chemometrics are needed to interpret and simplify the analytical data to ease understanding. This review explored the published literature indexed in PubMed, Scopus, and Google Scholar on the application of chemometrics as a tool in handling the large amount of data generated from metabolomic and lipidomic studies specifically in the halal authentication of meat products. The type of chemometric methods used is described and the efficiency of time in distinguishing the halal and non-halal meat products using chemometrics methods such as PCA, HCA, PLS-DA, and OPLS-DA is discussed.
    Matched MeSH terms: Meat/analysis
  4. Hossain MA, Ali ME, Hamid SB, Hossain SM, Asing, Nizar NN, et al.
    Food Chem, 2017 Jun 01;224:97-104.
    PMID: 28159299 DOI: 10.1016/j.foodchem.2016.12.062
    Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products.
    Matched MeSH terms: Red Meat/analysis*
  5. Rahman MM, Hamid SB, Basirun WJ, Bhassu S, Rashid NR, Mustafa S, et al.
    PMID: 26458055 DOI: 10.1080/19440049.2015.1104558
    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.
    Matched MeSH terms: Meat/analysis*
  6. Ahmad Kamal NH, Selamat J, Sanny M
    PMID: 29334335 DOI: 10.1080/19440049.2018.1425553
    This study investigated the simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures (150, 200, 250, 300, and 350°C). Solid-phase extraction (SPE) was used for sample clean-up. Fifteen PAHs were determined using high performance liquid chromatography with fluorescence detection (HPLC-FLD) and nine HCAs were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS) with a gradient programme. The lowest significantly concentrations of PAHs and HCAs were generated at 150°C; the formation of PAHs and HCAs simultaneously increased with temperatures. Benzo[a]pyrene was detected in all samples and increased markedly at 300 and 350°C. The sums of 4 PAHs (PAH4) in marinated beef satay at 300 and 350°C exceeded the maximum level in Commission Regulation (EU) 2015/1125. Significant reductions of polar and non-polar HCAs (except PhIP) were found in marinated beef satay across all temperatures. Overall, PAHs and HCAs showed opposite trends of formation in beef satay with marination.
    Matched MeSH terms: Meat/analysis*
  7. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Meat/analysis
  8. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Meat/analysis*
  9. Arsad SS, Zainudin MAM, De Gobba C, Jongberg S, Larsen FH, Lametsch R, et al.
    J Agric Food Chem, 2020 Feb 26;68(8):2506-2515.
    PMID: 32013414 DOI: 10.1021/acs.jafc.9b07752
    Thiol groups of cysteine (Cys) residues in proteins react with quinones, oxidation products of polyphenols, to form protein-polyphenol adducts. The aim of the present work was to quantify the amount of adduct formed between Cys residues and 4-methylcatechol (4MC) in minced beef. A Cys-4MC adduct standard was electrochemically synthesized and characterized by liquid chromatography-mass spectrometry (LC-MS) as well as NMR spectroscopy. Cys-4MC adducts were quantified after acidic hydrolysis of myofibrillar protein isolates (MPIs) and LC-MS/MS analysis of meat containing either 500 or 1500 ppm 4MC and stored at 4 °C for 7 days under a nitrogen or oxygen atmosphere. The concentrations of Cys-4MC were found to be 2.2 ± 0.3 nmol/mg MPI and 8.1 ± 0.9 nmol/mg MPI in meat containing 500 and 1500 ppm 4MC, respectively, and stored for 7 days under oxygen. The formation of the Cys-4MC adduct resulted in protein thiol loss, and ca. 62% of the thiol loss was estimated to account for the formation of the Cys-4MC adduct for meat containing 1500 ppm 4MC. Furthermore, protein polymerization increased in samples containing 4MC as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the polymerization was found to originate from protein-polyphenol interactions as evaluated by a blotting assay with staining by nitroblue tetrazolium.
    Matched MeSH terms: Meat/analysis*
  10. Rahman MM, Ali ME, Hamid SB, Mustafa S, Hashim U, Hanapi UK
    Meat Sci, 2014 Aug;97(4):404-9.
    PMID: 24769096 DOI: 10.1016/j.meatsci.2014.03.011
    A polymerase chain reaction (PCR) assay for the assessment of dog meat adulteration in meatballs was developed. The assay selectively amplified a 100-bp region of canine mitochondrial cytochrome b gene from pure, raw, processed and mixed backgrounds. The specificity of the assay was tested against 11 animals and 3 plants species, commonly available for meatball formulation. The stability of the assay was proven under extensively autoclaving conditions that breakdown target DNA. A blind test from ready to eat chicken and beef meatballs showed that the assay can repeatedly detect 0.2% canine meat tissues under complex matrices using 0.04 ng of dog DNA extracted from differentially treated meatballs. The simplicity, stability and sensitivity of the assay suggested that it could be used in halal food industry for the authentication of canine derivatives in processed foods.
    Matched MeSH terms: Meat/analysis
  11. Alirezalu K, Pirouzi S, Yaghoubi M, Karimi-Dehkordi M, Jafarzadeh S, Mousavi Khaneghah A
    Meat Sci, 2021 Jun;176:108475.
    PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475
    In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
    Matched MeSH terms: Red Meat/analysis*
  12. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Meat/analysis*
  13. Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, et al.
    Crit Rev Food Sci Nutr, 2023 Nov;63(33):11830-11858.
    PMID: 35821661 DOI: 10.1080/10408398.2022.2096562
    Treating livestock as senseless production machines has led to rampant depletion of natural resources, enhanced greenhouse gas emissions, gross animal welfare violations, and other ethical issues. It has essentially instigated constant scrutiny of conventional meat production by various experts and scientists. Sustainably in the meat sector is a big challenge which requires a multifaced and holistic approach. Novel tools like digitalization of the farming system and livestock market, precision livestock farming, application of remote sensing and artificial intelligence to manage production and environmental impact/GHG emission, can help in attaining sustainability in this sector. Further, improving nutrient use efficiency and recycling in feed and animal production through integration with agroecology and industrial ecology, improving individual animal and herd health by ensuring proper biosecurity measures and selective breeding, and welfare by mitigating animal stress during production are also key elements in achieving sustainability in meat production. In addition, sustainability bears a direct relationship with various social dimensions of meat production efficiency such as non-market attributes, balance between demand and consumption, market and policy failures. The present review critically examines the various aspects that significantly impact the efficiency and sustainability of meat production.
    Matched MeSH terms: Meat/analysis
  14. Mokhtar NFK, Shun YQ, Raja Nhari RMH, Mohamad NA, Shahidan NM, Warsanah IH, et al.
    PMID: 38190283 DOI: 10.1080/19440049.2023.2298476
    The inclusion of ingredients derived from pigs in highly processed consumer products poses a significant challenge for DNA-targeted analytical enforcement, which could be overcome by using digital PCR. However, most species detection methods use digital PCR to target single-copy nuclear genes, which limits their sensitivity. In this work, we examined the performance of a nanoplate-based digital PCR method that targets multi-copy nuclear (MPRE42) and mitochondrial (Cytb) genes. Poor separation of positive and negative partitions, as well as a 'rain effect' were obtained in the porcine-specific MPRE42 assay. Among the optimization strategies examined, the inclusion of restriction enzymes slightly improved the separation of positive and negative partitions, but a more extensive 'rain effect' was observed. The high copy number of the MPRE42 amplicon is hypothesized to contribute to the saturation of the positive signal. In contrast, the porcine-specific Cytb assay achieved perfect separation of positive and negative partitions with no 'rain effect'. This assay can detect as little as 0.4 pg of pork DNA, with a sensitivity of 0.05% (w/w) in a pork-chicken mixture, proving its applicability for detecting pork in meat and meat-based products. For the MPRE42 assay, potential applications in highly degraded products such as gelatin and lard are anticipated.
    Matched MeSH terms: Meat/analysis
  15. Chaosap C, Sitthigripong R, Sivapirunthep P, Pungsuk A, Adeyemi KD, Sazili AQ
    Food Chem, 2020 Aug 15;321:126677.
    PMID: 32247180 DOI: 10.1016/j.foodchem.2020.126677
    Myosin heavy chain (MHC) isoforms in goat muscles and their possible relationships with meat quality have not been fully elucidated. This study characterized the MHC isoforms in different caprine muscles using sodium dodecyl sulphate glycerol gel electrophoresis (SDS-GGE). The relationships between MHC isoforms, calpain systems and meat quality characteristics of different muscles in goats were examined. Four muscles, namely infraspinatus (IF), longissimus dorsi (LD), psoas major (PM) and supraspinatus (SS) were obtained from ten Boer crossbred bucks (7-10 months old; 26.5 ± 3.5 kg, BW). The percentages of MHC I, MHC IIa and MHC IIx in SS, IF, PM and LD were 47.2, 38.3, 32.1, 11.9; 28.0, 42.1, 33.0, 36.4; and 24.8, 19.6, 34.9 and 51.7, respectively. IF and SS had higher levels of calpastatin, total collagen and insoluble collagen contents than did PM and LD. PM had longer sarcomere length than did other muscles. LD had higher collagen solubility, troponin-T degradation products and glycogen content than did other muscles. These results infer that variable fiber-type composition could account partially for the differences in the physicochemical properties of goat muscles.
    Matched MeSH terms: Meat/analysis
  16. Dahimi O, Rahim AA, Abdulkarim SM, Hassan MS, Hashari SB, Mashitoh AS, et al.
    Food Chem, 2014 Sep 1;158:132-8.
    PMID: 24731324 DOI: 10.1016/j.foodchem.2014.02.087
    The adulteration of edible fats is a kind of fraud that impairs the physical and chemical features of the original lipid materials. It has been detected in various food, pharmaceutical and cosmeceutical products. Differential scanning calorimetry (DSC) is the robust thermo-analytical machine that permits to fingerprint the primary crystallisation of triacylglycerols (TAGs) molecules and their transition behaviours. The aims of this study was to assess the cross-contamination caused by lard concentration of 0.5-5% in the mixture systems containing beef tallow (BT) and chicken fat (CF) separately. TAGs species of pure and adulterated lipids in relation to their crystallisation and melting parameters were studied using principal components analysis (PCA). The results showed that by using the heating profiles the discrimination of LD from BT and CF was very clear even at low dose of less than 1%. Same observation was depicted from the crystallisation profiles of BT adulterated by LD doses ranging from 0.1% to 1% and from 2% to 5%, respectively. Furthermore, CF adulterated with LD did not exhibit clear changes on its crystallisation profiles. Consequently, DSC coupled with PCA is one of the techniques that might use to monitor and differentiate the minimum adulteration levels caused by LD in different animal fats.
    Matched MeSH terms: Meat/analysis*
  17. Ali ME, Razzak MA, Hamid SB, Rahman MM, Amin MA, Rashid NR, et al.
    Food Chem, 2015 Jun 15;177:214-24.
    PMID: 25660879 DOI: 10.1016/j.foodchem.2014.12.098
    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation.
    Matched MeSH terms: Meat/analysis*
  18. Ahamad MNU, Ali ME, Hossain MAM, Asing A, Sultana S, Jahurul MHA
    PMID: 28748739 DOI: 10.1080/19440049.2017.1359752
    Rabbit meat is receiving increasing attention because it contains a high level of proteins with relatively little fat. On the other hand, squirrel meat is served in upper-class meals in certain countries, so is sold at higher prices. The other side of the coin is rat meat, which has family ties with rabbit and squirrel but poses substantial threats to public health because it is a potential carrier of several zoonotic organisms. Recently, rat meat was mislabelled and sold as lamb after chemical modification. Thus, the chances of rabbit and squirrel meat substitution by rat meat cannot be ruled out. For the first time, a multiplex PCR assay was developed in Malaysia for the discriminatory identification of rat, rabbit and squirrel in the food chain. Rabbit (123 bp), rat (108 bp) and squirrel (243 bp) targets were amplified from ATP6 and cytb genes, along with a eukaryotic internal control (141bp). The products were sequenced and cross-tested against 22 species. A total of 81 reference samples and 72 meatball specimens were screened to validate the assay. Analyte stability was evaluated through boiling, autoclaving and micro-oven cooking. The tested lower limits of detection were 0.01 ng DNA for pure meat and 0.1% for meatballs.
    Matched MeSH terms: Meat/analysis*
  19. Mohamad NA, Mustafa S, Khairil Mokhtar NF, El Sheikha AF
    J Sci Food Agric, 2018 Sep;98(12):4570-4577.
    PMID: 29505123 DOI: 10.1002/jsfa.8985
    BACKGROUND: The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared.

    RESULTS: A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA.

    CONCLUSION: The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry.

    Matched MeSH terms: Meat/analysis
  20. Tan ET, Al Jassim R, D'Arcy BR, Fletcher MT
    PMID: 27575484
    Camel meat production for human consumption and pet food manufacture accounts for a relatively small part of overall red meat production in Australia. Reliable statistical data for the Australian production and consumption of camel meat are not available; however, it is estimated that 300,000 feral camels roam within the desert of central Australia, with an annual usage of more than 3000 camels for human consumption, 2000 for pet food manufacture and a smaller number for live export. Despite a small Australian camel meat production level, the usage of camel meat for pet food has been restricted in recent years due to reports of serious liver disease and death in dogs consuming camel meat. This camel meat was found to contain residues of indospicine, a non-proteinogenic amino acid found in certain Indigofera spp., and associated with mild to severe liver disease in diverse animals after dietary exposure to this hepatotoxin. The extent of indospicine-contaminated Australian camel meat was previously unknown, and this study ascertains the prevalence of such residue in Australian camel meat. In this study, indospicine levels in ex situ (95 samples collected from an abattoir in Queensland) and in situ (197 samples collected from camels after field culling in central Australia) camel meat samples were quantitated using a validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The quantitation results showed 46.7% of the in situ- and 20.0% of the ex situ-collected camel meat samples were contaminated by indospicine (more than the limit of detection (LOD) of 0.05 mg kg(-1) fresh weight). The overall indospicine concentration was higher (p < 0.05) in the in situ-collected samples. Indospicine levels detected in the present study are considered to be low; however, a degree of caution must still be exercised, since the tolerable daily intake for indospicine is currently not available for risk estimation.
    Matched MeSH terms: Meat/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links