Displaying all 15 publications

Abstract:
Sort:
  1. Hashim KN, Chin KY, Ahmad F
    Molecules, 2021 Feb 04;26(4).
    PMID: 33557218 DOI: 10.3390/molecules26040808
    Metabolic syndrome is a constellation of five risk factors comprising central obesity, hyperglycaemia, dyslipidaemia, and hypertension, which predispose a person to cardiometabolic diseases. Many studies reported the beneficial effects of honey in reversing metabolic syndrome through its antiobesity, hypoglycaemic, hypolipidaemic, and hypotensive actions. This review aims to provide an overview of the mechanism of honey in reversing metabolic syndrome. The therapeutic effects of honey largely depend on the antioxidant and anti-inflammatory properties of its polyphenol and flavonoid contents. Polyphenols, such as caffeic acid, p-coumaric acid, and gallic acid, are some of the phenolic acids known to have antiobesity and antihyperlipidaemic properties. They could inhibit the gene expression of sterol regulatory element-binding transcription factor 1 and its target lipogenic enzyme, fatty acid synthase (FAS). Meanwhile, caffeic acid and quercetin in honey are also known to reduce body weight and fat mass. In addition, fructooligosaccharides in honey are also known to alter lipid metabolism by reducing FAS activity. The fructose and phenolic acids might contribute to the hypoglycaemic properties of honey through the phosphatidylinositol 3-kinase/protein kinase B insulin signalling pathway. Honey can increase the expression of Akt and decrease the expression of nuclear factor-kappa B. Quercetin, a component of honey, can improve vasodilation by enhancing nitric oxide production via endothelial nitric oxide synthase and stimulate calcium-activated potassium channels. In conclusion, honey can be used as a functional food or adjuvant therapy to prevent and manage metabolic syndrome.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  2. Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF
    Molecules, 2021 Sep 09;26(18).
    PMID: 34576959 DOI: 10.3390/molecules26185490
    Metabolic syndrome (MetS) is a constellation of risk factors that may lead to a more sinister disease. Raised blood pressure, dyslipidemia in the form of elevated triglycerides and lowered high-density lipoprotein cholesterol, raised fasting glucose, and central obesity are the risk factors that could lead to full-blown diabetes, heart disease, and many others. With increasing sedentary lifestyles, coupled with the current COVID-19 pandemic, the numbers of people affected with MetS will be expected to grow in the coming years. While keeping these factors checked with the polypharmacy available currently, there is no single strategy that can halt or minimize the effect of MetS to patients. This opens the door for a more natural way of controlling the disease. Caffeic acid (CA) is a phytonutrient belonging to the flavonoids that can be found in abundance in plants, fruits, and vegetables. CA possesses a wide range of beneficial properties from antioxidant, immunomodulatory, antimicrobial, neuroprotective, antianxiolytic, antiproliferative, and anti-inflammatory activities. This review discusses the current discovery of the effect of CA against MetS.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  3. Ibraheem ZO, Basir R, Aljobory AKh, Ibrahim OE, Alsumaidaee A, Yam MF
    Biomed Res Int, 2014;2014:823879.
    PMID: 25045706 DOI: 10.1155/2014/823879
    The current study evaluates the impact of high fructose feeding in rat model of gentamicin induced nephrotoxicity. Sprague-Dawley rats weighing 180-200 g were randomized into four groups; (C) received standard rodents chow with free access to ad libitum drinking water for 8 weeks and was considered as control, (F) received standard rodents chow with free access to drinking water supplemented with 20% (W/V) fructose for the same abovementioned period, (FG) was fed as group F and was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 20 days of the feeding period, and (G) was given gentamicin as above and fed as group C. Renal function was assessed at the end of the treatment period through measuring serum creatinine, uric acid and albumin, creatinine clearance, absolute and fractional excretion of both sodium and potassium, twenty-four-hour urinary excretion of albumin, and renal histology. For metabolic syndrome assessment, fasting plasma glucose and insulin were measured and oral glucose tolerance test was performed throughout the treatment period. Results showed that gentamicin enhances progression of fructose induced metabolic syndrome. On the other hand, fructose pretreatment before gentamicin injection produced a comparable degree of renal dysfunction to those which were given fructose-free water but the picture of nephrotoxicity was somewhat altered as it was characterized by higher extent of glomerular congestion and protein urea. Overall, more vigilance is required when nephrotoxic drugs are prescribed for patients with fructose induced metabolic syndrome.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  4. Wong SK, Chin KY, Ima-Nirwana S
    Int J Med Sci, 2020;17(11):1625-1638.
    PMID: 32669965 DOI: 10.7150/ijms.47103
    Oxidative stress and inflammation are two interlinked events that exist simultaneously in metabolic syndrome (MetS) and its related complications. These pathophysiological processes can be easily triggered by each other. This review summarizes the current evidence from animal and human studies on the effects of vitamin C in managing MetS. In vivo studies showed promising effects of vitamin C, but most of the interventions used were in combination with other compounds. The direct effects of vitamin C remain to be elucidated. In humans, the current state of evidence revealed that lower vitamin C intake and circulating concentration were found in MetS subjects. A negative relationship was observed between vitamin C intake / concentration and the risk of MetS. Oral supplementation of vitamin C also improved MetS conditions. It has been postulated that the positive outcomes of vitamin C may be in part mediated through its anti-oxidative and anti-inflammatory properties. These observations suggest the importance of MetS patients to have an adequate intake of vitamin C through food, beverages or supplements in order to maintain its concentration in the systemic circulation and potentially reverse MetS.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  5. Heng BC, Aubel D, Fussenegger M
    Curr Opin Biotechnol, 2015 Dec;35:37-45.
    PMID: 25679308 DOI: 10.1016/j.copbio.2015.01.010
    Synthetic biology makes inroads into clinical therapy with the debut of closed-loop prosthetic gene networks specifically designed to treat human diseases. Prosthetic networks are synthetic sensor/effector devices that could functionally integrate and interface with host metabolism to monitor disease states and coordinate appropriate therapeutic responses in a self-sufficient, timely and automatic manner. Prosthetic networks hold particular promise for the current global epidemic of closely interrelated metabolic disorders encompassing obesity, type 2 diabetes, hypertension and hyperlipidaemia, which arise from the unhealthy lifestyle and dietary factors in the modern urbanised world. This review will critically examine the various attempts at constructing prosthetic gene networks for the treatment of these metabolic disorders, as well as provide insight into future developments in the field.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  6. Ibraheem ZO, Satar M, Abdullah NA, Rathore H, Tan YC, Uldin F, et al.
    Pak J Pharm Sci, 2014 Jan;27(1):1-9.
    PMID: 24374430
    Recently, it is suggested to use POLE (palm oil leaf extract) as a nutraceutical health product in food industry due to its newly discovered content of polyphenols and antioxidant vitamins. In the experiment, the antioxidant and anti-lipid-peroxidation activities of the extract were confirmed using; DPPH (1-diphenyl-2-picryl-hydrazil) radical scavenging activity, ferric ion induced lipid peroxidation inhibition, reducing power and hydrogen peroxide scavenging activity assays. The cardio-protective activity was studied in vivo using a model of metabolic syndrome induced by high fat diet. Lipid profile, obesity indices, renal tubular handling of water and electrolytes, blood pressure and arterial stiffness were measured at the end of the treatment period. Sprague Dawley rats weighing 150-200 g were divided into six groups, viz; group C; was treated as a negative control and fed with standard rodents chow, group H; was treated as a positive control and fed with an experimental diet enriched with saturated free fatty acids for 8 weeks, groups HP0.5, HP1 and HP2 which were fed with 0.5,1 and 2 g/kg (body weight) /day of POLE orally during the last 24 days of the high fat diet feeding period and group P; fed with highest dose of POLE. Results revealed that POLE possesses a cardio-protective effect which is ascribed to its content of polyphenols.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  7. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    PMID: 31817937 DOI: 10.3390/ijerph16244987
    Metabolic syndrome (MetS) is a group of conditions including central obesity, hyperglycemia, dyslipidemia, and hypertension that increases the risk for cardiometabolic diseases. Kelulut honey (KH) produced by stingless honey bees has stronger antioxidant properties compared to other honey types and may be a functional food against MetS. This study aimed to determine the efficacy of KH in preventing metabolic changes in rats with MetS induced by high-carbohydrate and high-fat (HCHF) diet. Male Wistar rats were randomly assigned to the control (C), HCHF diet-induced MetS (S), and MetS supplemented with KH (K) groups. The K group was given KH (1 g/kg/day) for eight weeks. Compared to the control, the S group had significant higher omental fat mass, serum triglyceride, systolic blood pressure, diastolic blood pressures, adipocyte area, and adipocyte perimeter (p < 0.05). KH supplementation significantly prevented these MetS-induced changes at week 16 (p < 0.05). Several compounds, including 4-hydroxyphenyl acetic acid, coumaric and caffeic acids, had been detected via liquid chromatography-mass spectrometry analysis that might contribute to the reversal of these changes. The beneficial effects of KH against MetS-induced rats provide the basis for future KH research to investigate its potential use in humans and its molecular mechanisms in alleviating the disease.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  8. Ekeuku SO, Pang KL, Chin KY
    Drug Des Devel Ther, 2020;14:4963-4974.
    PMID: 33235437 DOI: 10.2147/DDDT.S280520
    Palmatine is a naturally occurring isoquinoline alkaloid with various pharmacological properties. Given its antioxidant and anti-inflammatory properties, palmatine may be able to impede the effects of metabolic syndrome (MetS) and its related diseases triggered by inflammation and oxidative stress. This review summarises the existing literature about the effects of palmatine supplementation on MetS and its complications. The evidence shows that palmatine could protect against MetS, and cardiovascular diseases, osteoporosis and osteoarthritis, which might be associated with MetS. These protective effects are mediated by the antioxidant and anti-inflammatory properties of palmatine. Although preclinical experiments have demonstrated the efficacy of palmatine against MetS and its related diseases, no human clinical trials have been performed to validate these effects. This research gap should be bridged to validate the efficacy and safety of palmatine supplementation in protecting humans against MetS and its related diseases.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  9. Kuate D, Kengne AP, Biapa CP, Azantsa BG, Abdul Manan Bin Wan Muda W
    Lipids Health Dis, 2015;14:50.
    PMID: 26003803 DOI: 10.1186/s12944-015-0051-0
    Background: Tetrapleura tetraptera, a seasoning and nutritive spice is also used in western African folk medicine in the management of wide variety of diseases including diabetes, inflammation and hypertension. Flavonoids and saponins are some abundant secondary metabolic constituents in the fruits of this plant. This study aimed at evaluating the potential therapeutic action of the polyphenol-rich hydroethanolic extract (HET) of this fruit in experimentally induced obese and type 2 diabetic rats (T2DM) with characteristic metabolic syndrome (MetS).

    Methods: MetS was induced in rats by high-carbohydrate, high-fat diet and administration of low-dose streptozotocin. Then different oral doses of HET (200 and 400 mg/kg) were administered to T2DM rats for 28 days. A standard antidiabetic drug, metformin (300 mg/kg), was used for comparison. The body weight, systolic blood pressure, oxidative stress and metabolic parameters were then assessed to evaluate the effect of HET on MetS.

    Results: HET reduced weight gain, fasting blood glucose and plasma insulin levels as well as homeostasis model assessment of insulin resistance (HOMA-IR) and alleviated obesity and T2DM associated oxidative stress and hypertension in rats. Moreover, a significantly hypolipidemic property and an attenuation of liver injury and tissue steatosis was observed after HET administration. HET further demonstrated its anti-inflammation effect via down regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), leptin and an increase in adiponectin. The HET exhibited dose-dependent effects which were comparable to that of metformin.

    Conclusions: The present study thereby demonstrates the anti-insulin resistance, antilipidemic, anti-obesity, hypotensive and anti-inflammatory properties of HET; hence it has the potential to be further developed for the management of MetS such as obesity, T2DM and hypertension.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  10. Ramli NS, Brown L, Ismail P, Rahmat A
    PMID: 24919841 DOI: 10.1186/1472-6882-14-189
    The fruit of Hylocereus polyrhizus, also known as red pitaya, and buah naga in Malay, is one of the tropical fruits of the cactus family, Cactaceae. Red pitaya has been shown to protect aorta from oxidative damage and improve lipid profiles in hypercholesterolemic rats probably due to phytochemicals content including phenolics and flavonoids. The aim of this study was to investigate the changes in cardiac stiffness, hepatic and renal function in high-carbohydrate, high-fat diet-induced obese rats following supplementation of red pitaya juice.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  11. Eu CH, Lim WY, Ton SH, bin Abdul Kadir K
    Lipids Health Dis, 2010;9:81.
    PMID: 20670429 DOI: 10.1186/1476-511X-9-81
    The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  12. Hossain MM, Mukheem A, Kamarul T
    Life Sci, 2015 Aug 15;135:55-67.
    PMID: 25818192 DOI: 10.1016/j.lfs.2015.03.010
    Hypoadiponectinemia is characterized by low plasma adiponectin levels that can be caused by genetic factors, such as single nucleotide polymorphisms (SNPs) and mutations in the adiponectin gene or by visceral fat deposition/obesity. Reports have suggested that hypoadiponectinemia is associated with dyslipidemia, hypertension, hyperuricemia, metabolic syndrome, atherosclerosis, type 2 diabetes mellitus and various cardiovascular diseases. Previous studies have highlighted several potential strategies to up-regulate adiponectin secretion and function, including visceral fat reduction through diet therapy and exercise, administration of exogenous adiponectin, treatment with peroxisome proliferator-activating receptor gamma (PPARγ) agonists (e.g., thiazolidinediones (TZDs)) and ligands (e.g., bezafibrate and fenofibrate) or the blocking of the renin-angiotensin system. Likewise, the up-regulation of the expression and stimulation of adiponectin receptors by using adiponectin receptor agonists would be an effective method to treat obesity-related conditions. Notably, adiponectin is an abundantly expressed bioactive protein that also exhibits a wide spectrum of biological properties, such as insulin-sensitizing, anti-diabetic, anti-inflammatory and anti-atherosclerotic activities. Although targeting adiponectin and its receptors has been useful for treating diabetes and other metabolic-related diseases in experimental studies, current drug development based on adiponectin/adiponectin receptors for clinical applications is scarce, and there is a lack of available clinical trial data. This comprehensive review discusses the strategies that are presently being pursued to harness the potential of adiponectin up-regulation. In addition, we examined the current status of drug development and its potential for clinical applications.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy
  13. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  14. El-Sayed NNE, Almaneai NM, Ben Bacha A, Al-Obeed O, Ahmad R, Abdulla M, et al.
    J Enzyme Inhib Med Chem, 2019 Dec;34(1):672-683.
    PMID: 30821525 DOI: 10.1080/14756366.2019.1574780
    Some new 3H-quinazolin-4-one derivatives were synthesised and screened for anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities. Compound 15d was more potent in reducing the cell viabilities of HT-29 and SW620 cells lines to 38%, 36.7%, compared to 5-FU which demonstrated cell viabilities of 65.9 and 42.7% respectively. The IC50 values of 15d were ∼20 µg/ml. Assessment of apoptotic activity revealed that 15d decreased the cell viability by down regulating Bcl2 and BclxL. Moreover, compounds, 8j, 8d/15a/15e, 5b, and 8f displayed lowered IC50 values than oleanolic acid against proinflammatory isoforms of hGV, hG-X, NmPLA2, and AmPLA2. In addition, 8d, 8h, 8j, 15a, 15b, 15e, and 15f showed better anti-α-amylase than quercetin, whereas 8g, 8h, and 8i showed higher anti-α-glucosidase activity than allopurinol. Thus, these compounds can be considered as potential antidiabetic agents. Finally, none of the compounds showed higher antiproteases or xanthine oxidase activities than the used reference drugs.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy*
  15. Fernando HA, Chandramouli C, Rosli D, Lam YL, Yong ST, Yaw HP, et al.
    Nutrients, 2014 Nov 04;6(11):4856-71.
    PMID: 25375630 DOI: 10.3390/nu6114856
    Glycyrrhizic acid (GA) ameliorates many components of the metabolic syndrome, but its potential therapeutic use is marred by edema caused by inhibition of renal 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). We assessed whether 100 mg/kg per day GA administered orally could promote metabolic benefits without causing edema in rats fed on a high-sucrose diet. Groups of eight male rats were fed on one of three diets for 28 days: normal diet, a high-sucrose diet, or a high-sucrose diet supplemented with GA. Rats were then culled and renal 11β-HSD2 activity, as well as serum sodium, potassium, angiotensin II and leptin levels were determined. Histological analyses were performed to assess changes in adipocyte size in visceral and subcutaneous depots, as well as hepatic and renal tissue morphology. This dosing paradigm of GA attenuated the increases in serum leptin levels and visceral, but not subcutaneous adipocyte size caused by the high-sucrose diet. Although GA decreased renal 11β-HSD2 activity, it did not affect serum electrolyte or angiotensin II levels, indicating no onset of edema. Furthermore, there were no apparent morphological changes in the liver or kidney, indicating no toxicity. In conclusion, it is possible to reap metabolic benefits of GA without edema using the current dosage and treatment time.
    Matched MeSH terms: Metabolic Syndrome X/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links