Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Wong QYA, Lim JJ, Ng JY, Lim YYE, Sio YY, Chew FT
    J Physiol Anthropol, 2024 Jan 30;43(1):6.
    PMID: 38291494 DOI: 10.1186/s40101-024-00356-5
    BACKGROUND AND OBJECTIVE: Sleep disruption has been shown to affect immune function and thus influence allergic disease manifestation. The specific effects of sleep on allergic diseases, however, are less well-established; hence, in a unique population of young Chinese adults, we investigated the association between sleep and allergic disease.

    METHODS: Young Chinese adults recruited from Singapore in the Singapore/Malaysia Cross-Sectional Genetic Epidemiology Study (SMCGES) were analyzed. We used the International Study of Asthma and Allergies in Childhood (ISAAC) protocol and a skin prick test to determine atopic dermatitis (AD), allergic rhinitis (AR), and asthma status. Information regarding total sleep time (TST) and sleep quality (SQ) was also obtained.

    RESULTS: Of 1558 participants with a mean age of 25.0 years (SD = 7.6), 61.4% were female, and the mean total sleep time (TST) was 6.8 h (SD = 1.1). The proportions of AD, AR, and asthma were 24.5% (393/1542), 36.4% (987/1551), and 14.7% (227/1547), respectively. 59.8% (235/393) of AD cases suffered from AD-related sleep disturbances, 37.1% (209/564) of AR cases suffered from AR-related sleep disturbances, and 25.1% (57/227) of asthma cases suffered from asthma-related sleep disturbances. Only asthma cases showed a significantly lower mean TST than those without asthma (p = 0.015). Longer TST was significantly associated with lower odds of AR (OR = 0.905, 95% CI = 0.820-0.999) and asthma (OR = 0.852, 95% CI = 0.746-0.972). Linear regression analyses showed that lower TST was significantly associated with asthma (β =  - 0.18, SE = 0.076, p-value = 0.017), and AR when adjusted for AR-related sleep disturbances (β =  - 0.157, SE = 0.065, p-value = 0.016). Only sleep disturbances due to AR were significantly associated with a poorer SQ (OR = 1.962, 95% CI = 1.245-3.089).

    CONCLUSIONS: We found that sleep quality, but not sleep duration was significantly poorer among AD cases, although the exact direction of influence could not be determined. In consideration of the literature coupled with our findings, we posit that TST influences allergic rhinitis rather than vice versa. Finally, the association between TST and asthma is likely mediated by asthma-related sleep disturbances, since mean TST was significantly lower among those with nighttime asthma symptoms. Future studies could consider using objective sleep measurements coupled with differential expression analysis to investigate the pathophysiology of sleep and allergic diseases.

    Matched MeSH terms: Molecular Epidemiology
  2. Tahar AS, Ong EJ, Rahardja A, Mamora D, Lim KT, Ahmed K, et al.
    J Med Virol, 2023 Aug;95(8):e28987.
    PMID: 37501648 DOI: 10.1002/jmv.28987
    Rotavirus is the leading causative viral agent of pediatric acute gastroenteritis globally, infecting mostly children 5 years old and below. Data on rotavirus prevalence in Malaysia is scarce, despite the WHO's recommendation for continuous rotavirus surveillance, and has underestimated the need for national rotavirus vaccination. Characteristics of the current rotavirus strains in Malaysia have to be determined to understand the rotavirus epidemiology and vaccine compatibility. This study sought to determine the genetic relatedness of Sarawak rotavirus strains with global strains and to determine the antigenic coverage and epitope compatibility of Rotarix and RotaTeq vaccines with the Sarawak rotavirus strains via in silico analysis. A total of 89 stool samples were collected from pediatric patients (<5 years old) with acute gastroenteritis at private hospitals in Kuching, Sarawak. Rotavirus was detected using reverse transcription-polymerase chain reaction. Positive amplicons were analyzed using nucleotide sequencing before phylogenetic analyses and assessment of epitope compatibility. Genotyping revealed G1P[8] (1/13; 7.7%), G3P[8] (3/13; 23%), G9P[4] (1/13; 7.7%), and G9P[8] (3/13; 23%), G9P[X] (1/13; 7.7%), GXP[4] (1/13; 7.7%), and GXP[8] (3/13; 23%) in samples. All wild-type Sarawak rotavirus strains, with the exception of G1, showed variations in their phylogenetic and antigenic epitope characteristics.
    Matched MeSH terms: Molecular Epidemiology
  3. Rizwan M, Ali S, Javid A, von Fricken ME, Rashid MI
    Acta Trop, 2023 Jul;243:106940.
    PMID: 37160189 DOI: 10.1016/j.actatropica.2023.106940
    Bartonella can infect a variety of mammals including humans and has been detected in the Americas, Europe, Africa, and Asia. Roughly two-thirds of identified Bartonella species are found and maintained in rodent reservoirs, with some of these species linked to human infections. Rodents (N=236) were caught from the Sahiwal division of Punjab, Pakistan and tested for Bartonella using PCR targeting gltA and rpoB genes, followed by sequencing of rpoB-positive samples. Genetic relatedness to other published Bartonella spp. rpoB gene sequences were examined using BLAST and phylogenetic analysis. Overall, 7.62% (18/236) of rodents were positive for both gltA and rpoB fragments. Rattus rattus and R. norvegicus had 7.94% (12/151) and 7.05% (6/85) positivity rates for Bartonella DNA, respectively. Phylogenetic analysis revealed a close relatedness between Bartonella spp. from Pakistan to Bartonella spp. from China, Nepal, and Malaysia. This study is the first reported detection of Bartonella spp. in R. rattus and R. norvegicus from the Sahiwal area of Punjab, Pakistan.
    Matched MeSH terms: Molecular Epidemiology
  4. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
    Matched MeSH terms: Molecular Epidemiology
  5. Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al.
    Science, 2022 Aug 26;377(6609):960-966.
    PMID: 35881005 DOI: 10.1126/science.abp8337
    Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
    Matched MeSH terms: Molecular Epidemiology
  6. Kong ZX, N Karunakaran R, Abdul Jabar K, Ponnampalavanar S, Chong CW, Teh CSJ
    PeerJ, 2022;10:e12830.
    PMID: 35223201 DOI: 10.7717/peerj.12830
    BACKGROUND: Carbapenem resistant Enterobacteriaceae (CRE) has rapidly disseminated worldwide and has become a global threat to the healthcare system due to its resistance towards "last line" antibiotics. This study aimed to investigate the prevalence of CRE and the resistance mechanism as well as the risk factors associated with in-hospital mortality.

    METHODS: A total of 168 CRE strains isolated from a tertiary teaching hospital from 2014-2015 were included in this study. The presence of carbapenemase genes and minimum inhibitory concentration of imipenem, meropenem and colistin were investigated. All carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) strains were characterised by PFGE. The risk factors of patients infected by CRE associated with in-hospital mortality were determined statistically.

    RESULTS: The predominant CRE species isolated was K. pneumoniae. The carbapenemases detected were blaOXA-48, blaOXA-232, blaVIM and blaNDM of which blaOXA-48 was the predominant carbapenemase detected among 168 CRE strains. A total of 40 CRE strains harboured two different carbapenemase genes. A total of seven clusters and 48 pulsotypes were identified among 140 CRKp strains. A predominant pulsotype responsible for the transmission from 2014 to 2015 was identified. Univariate statistical analysis identified that the period between CRE isolation and start of appropriate therapy of more than 3 days was statistically associated with in-hospital mortality.

    Matched MeSH terms: Molecular Epidemiology
  7. Bainomugisa A, Meumann EM, Rajahram GS, Ong RT, Coin L, Paul DC, et al.
    Microb Genom, 2021 05;7(5).
    PMID: 33945455 DOI: 10.1099/mgen.0.000573
    Tuberculosis is a leading public health priority in eastern Malaysia. Knowledge of the genomic epidemiology of tuberculosis can help tailor public health interventions. Our aims were to determine tuberculosis genomic epidemiology and characterize resistance mutations in the ethnically diverse city of Kota Kinabalu, Sabah, located at the nexus of Malaysia, Indonesia, Philippines and Brunei. We used an archive of prospectively collected Mycobacterium tuberculosis samples paired with epidemiological data. We collected sputum and demographic data from consecutive consenting outpatients with pulmonary tuberculosis at the largest tuberculosis clinic from 2012 to 2014, and selected samples from tuberculosis inpatients from the tertiary referral centre during 2012-2014 and 2016-2017. Two hundred and eight M. tuberculosis sequences were available for analysis, representing 8 % of cases notified during the study periods. Whole-genome phylogenetic analysis demonstrated that most strains were lineage 1 (195/208, 93.8 %), with the remainder being lineages 2 (8/208, 3.8 %) or 4 (5/208, 2.4 %). Lineages or sub-lineages were not associated with patient ethnicity. The lineage 1 strains were diverse, with sub-lineage 1.2.1 being dominant (192, 98 %). Lineage 1.2.1.3 isolates were geographically most widely distributed. The greatest diversity occurred in a border town sub-district. The time to the most recent common ancestor for the three major lineage 1.2.1 clades was estimated to be the year 1966 (95 % HPD 1948-1976). An association was found between failure of culture conversion by week 8 of treatment and infection with lineage 2 (4/6, 67 %) compared with lineage 1 strains (4/83, 5 %) (P<0.001), supporting evidence of greater virulence of lineage 2 strains. Eleven potential transmission clusters (SNP difference ≤12) were identified; at least five included people living in different sub-districts. Some linked cases spanned the whole 4-year study period. One cluster involved a multidrug-resistant tuberculosis strain matching a drug-susceptible strain from 3 years earlier. Drug resistance mutations were uncommon, but revealed one phenotype-genotype mismatch in a genotypically multidrug-resistant isolate, and rare nonsense mutations within the katG gene in two isolates. Consistent with the regionally mobile population, M. tuberculosis strains in Kota Kinabalu were diverse, although several lineage 1 strains dominated and were locally well established. Transmission clusters - uncommonly identified, likely attributable to incomplete sampling - showed clustering occurring across the community, not confined to households or sub-districts. The findings indicate that public health priorities should include active case finding and early institution of tuberculosis management in mobile populations, while there is a need to upscale effective contact investigation beyond households to include other contacts within social networks.
    Matched MeSH terms: Molecular Epidemiology*
  8. Dzaraly ND, Mohd Desa MN, Muthanna A, Masri SN, Taib NM, Suhaili Z, et al.
    Sci Rep, 2021 Apr 15;11(1):8220.
    PMID: 33859249 DOI: 10.1038/s41598-021-87428-z
    Pilus has been recently associated with pneumococcal pathogenesis in humans. The information regarding piliated isolates in Malaysia is scarce, especially in the less developed states on the east coast of Peninsular Malaysia. Therefore, we studied the characteristics of pneumococci, including the piliated isolates, in relation to antimicrobial susceptibility, serotypes, and genotypes at a major tertiary hospital on the east coast of Peninsular Malaysia. A total of 100 clinical isolates collected between September 2017 and December 2019 were subjected to serotyping, antimicrobial susceptibility test, and detection of pneumococcal virulence and pilus genes. Multilocus sequence typing (MLST) and phylogenetic analysis were performed only for piliated strains. The most frequent serotypes were 14 (17%), 6A/B (16%), 23F (12%), 19A (11%), and 19F (11%). The majority of isolates were resistant to erythromycin (42%), tetracycline (37%), and trimethoprim-sulfamethoxazole (24%). Piliated isolates occurred in a proportion of 19%; 47.3% of them were multidrug-resistant (MDR) and a majority had serotype 19F. This study showed ST236 was the most predominant sequence type (ST) among piliated isolates, which was related to PMEN clone Taiwan19F-14 (CC271). In the phylogenetic analysis, the piliated isolates were grouped into three major clades supported with 100% bootstrap values. Most piliated isolates belonged to internationally disseminated clones of S. pneumoniae, but pneumococcal conjugate vaccines (PCVs) have the potential to control them.
    Matched MeSH terms: Molecular Epidemiology
  9. Hamzah SNA, Mohd Desa MN, Jasni AS, Mohd Taib N, Masri SN, Hamat RA
    Med J Malaysia, 2021 03;76(2):164-170.
    PMID: 33742623
    BACKGROUND: Streptococcus pyogenes has a variety of virulence factors and the predominant invasive strains differ according to specific emm types and geographical orientation. Although emm typing is commonly used as the gold standard method for the molecular characterisation, multilocus sequence typing (MLST) has become an important tool for comparing the genetic profiles globally. This study aimed to screen selected virulence genes from invasive and non-invasive clinical samples and to characterise the molecular epidemiology by emm typing and MLST methods.

    MATERIALS AND METHODS: A total of 42 S. pyogenes isolates from invasive and non-invasive samples collected from two different tertiary hospitals were investigated for the distribution of virulence factors and their molecular epidemiology by emm and multilocus sequence typing methods. Detection of five virulence genes (speA, speB, speJ, ssa and sdaB) was performed using multiplex polymerase chain reaction (PCR) using the standard primers and established protocol. Phylogenetic tree branches were constructed from sequence analysis utilised by neighbour joining method generated from seven housekeeping genes using MEGA X software.

    RESULTS: Multiplex PCR analysis revealed that sdaB/speF (78.6%) and speB (61.9%) were the predominant virulence genes. Regardless of the type of invasiveness, diverse distribution of emm types/subtypes was noted which comprised of 27 different emm types/subtypes. The predominant emm types/subtypes were emm63 and emm18 with each gene accounted for 11.8% whereas 12% for each gene was noted for emm28, emm97.4 and emm91. The MLST revealed that the main sequence type (ST) in invasive samples was ST402 (17.7%) while ST473 and ST318 (12% for each ST) were the major types in non-invasive samples. Out of 18 virulotypes, Virulotype A (five genes, 55.6%) and Virulotype B (two genes, 27.8%) were the major virulotypes found in this study. Phylogenetic analysis indicated the presence of seven different clusters of S. pyogenes. Interestingly, Cluster VI showed that selected emm/ST types such as emm71/ST318 (n=2), emm70.1/ST318 (n=1), emm44/ST31 (n=1) and emm18/ST442 (n=1) have clustered within a common group (Virulotype A) for both hospitals studied.

    CONCLUSION: The present study showed that group A streptococcci (GAS) are genetically diverse and possess virulence genes regardless of their invasiveness. Majority of the GAS exhibited no restricted pattern of virulotypes except for a few distinct clusters. Therefore, it can be concluded that virulotyping is partially useful for characterising a heterogeneous population of GAS in hospitals.

    Matched MeSH terms: Molecular Epidemiology
  10. Teh CSJ, Yap PSX, Zulkefli NJ, Subramaniam P, Sit PS, Kong ZX, et al.
    Transbound Emerg Dis, 2021 Jan 27.
    PMID: 33506647 DOI: 10.1111/tbed.14005
    Burkholderia pseudomallei, a Gram-negative bacterial pathogen that causes melioidosis, is of public health importance in endemic areas including Malaysia. An investigation of the molecular epidemiology links of B. pseudomallei would contribute to better understanding of the clonal relationships, transmission dynamics and evolutionary change. Multi-locus sequence typing (MLST) of 45 clinical B. pseudomallei isolates collected from sporadic meliodosis cases in Malaysia was performed. In addition, a total of 449 B. pseudomallei Malaysian strains submitted to the MLST database from 1964 until 2019 were included in the temporal analysis to determine the endemic sequence types (STs), emergence and re-emergence of ST(s). In addition, strain-specific distribution was evaluated using BURST tool. Genotyping of 45 clinical strains were resolved into 12 STs and the majority were affiliated with ST46 (n=11) and ST1342 (n=7). Concomitantly, ST46 was the most prevalent ST in Malaysia which first reported in 1964. All the Malaysian B. pseudomallei strains were resolved into 76 different STs with 36 of them uniquely present only in Malaysia. ST1342 was most closely related to ST1034, in which both STs were unique to Malaysia and first isolated from soil samples in Pahang, a state in Malaysia. The present study revealed a high diversity of B. pseudomallei in Malaysia. Localised evolution giving rise to the emergence of new STs was observed, suggesting that host and environmental factors play a crucial role in the evolutionary changes of B. pseudomallei.
    Matched MeSH terms: Molecular Epidemiology
  11. Arushothy R, Amran F, Samsuddin N, Ahmad N, Nathan S
    PLoS Negl Trop Dis, 2020 12;14(12):e0008979.
    PMID: 33370273 DOI: 10.1371/journal.pntd.0008979
    BACKGROUND: Melioidosis is a neglected tropical disease with rising global public health and clinical importance. Melioidosis is endemic in Southeast Asia and Northern Australia and is of increasing concern in Malaysia. Despite a number of reported studies from Malaysia, these reports are limited to certain parts of the country and do not provide a cohesive link between epidemiology of melioidosis cases and the nation-wide distribution of the causative agent Burkholderia pseudomallei.

    METHODOLOGY/PRINCIPLE FINDINGS: Here we report on the distribution of B. pseudomallei sequence types (STs) in Malaysia and how the STs are related to STs globally. We obtained 84 culture-confirmed B. pseudomallei from confirmed septicaemic melioidosis patients from all over Malaysia. Prior to performing Multi Locus Sequence Typing, the isolates were subjected to antimicrobial susceptibility testing and detection of the YLF/BTFC genes and BimA allele. Up to 90.5% of the isolates were sensitive to all antimicrobials tested while resistance was observed for antimicrobials typically administered during the eradication stage of treatment. YLF gene cluster and bimABp allele variant were detected in all the isolates. The epidemiological distribution patterns of the Malaysian B. pseudomallei isolates were analysed in silico using phylogenetic tools and compared to Southeast Asian and world-wide isolates. Genotyping of the 84 Malaysian B. pseudomallei isolates revealed 29 different STs of which 6 (7.1%) were novel. ST50 was identified as the group founder followed by subgroup founders ST376, ST211 and ST84. A low-level diversity is noted for the B. pseudomallei isolates described in this study while phylogenetic analysis associated the Malaysian STs to Southeast Asian isolates especially isolates from Thailand. Further analysis also showed a strong association that implicates agriculture and domestication activities as high-risk routes of infection.

    CONCLUSIONS/SIGNIFICANCE: In conclusion, MLST analysis of B. pseudomallei clinical isolates from all states in Malaysia revealed low diversity and a close association to Southeast Asian isolates.

    Matched MeSH terms: Molecular Epidemiology
  12. Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Ali Khan S, Balkey MD, et al.
    Proc Natl Acad Sci U S A, 2020 11 17;117(46):29190-29201.
    PMID: 33139552 DOI: 10.1073/pnas.2000429117
    Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.
    Matched MeSH terms: Molecular Epidemiology
  13. Dzaraly ND, Muthanna A, Mohd Desa MN, Taib NM, Masri SN, Rahman NIA, et al.
    Int J Med Microbiol, 2020 Oct;310(7):151449.
    PMID: 33092697 DOI: 10.1016/j.ijmm.2020.151449
    Pneumococci are a common cause of severe infections, such as otitis media, pneumonia, meningitis and bacteremia. Pili are detected in a small proportion of pneumococcal population, but these structures have recently been associated with bacterial virulence in humans. Therefore, the epidemiological relationships between pneumococcal pili, serotype and antimicrobial resistance are of interest. This study aims to discuss the virulence contribution of the Streptococcus pneumoniae pili and the epidemiological relationships among the pilus genes, antimicrobial resistance trends, regional serotypes and genotypic variations. Previous reports have characterized the pneumococcal pilus islet as a clonal feature in the pneumococcal serotypes that are covered by the pneumococcal conjugate vaccine (PCV), including serotypes 19A, 19F, 23F and 7F. Many of the pneumococcal molecular epidemiology network (PMEN) clones are piliated isolates that are also strongly associated with a high frequency of multidrug resistance. Most of these piliated pneumococcal isolates belong to a few clonal complexes (CC), such as CC320, CC199, CC271, CC191 and CC156. Additional molecular epidemiology and genomic studies, particularly whole genome sequence analysis (WGS), are needed to develop an in-depth understanding of the piliated pneumococcal isolates.
    Matched MeSH terms: Molecular Epidemiology
  14. Kamal Azam NK, Selvarajah GT, Santhanam J, Abdul Razak MF, Ginsapu SJ, James JE, et al.
    Med Mycol, 2020 Jul 01;58(5):617-625.
    PMID: 31642485 DOI: 10.1093/mmy/myz106
    Sporothrix schenkii is a dimorphic fungus that causes infections in both humans and animals. We report on 25 S. schenkii isolates collected in 2017 from humans and cats clinically diagnosed with sporotrichosis, in Malaysia. These isolates were phenotypically identified as S. schenkii sensu lato and further defined as S. schenckii sensu stricto based on partial calmodulin gene sequence. Isolates from both humans and cats were genotypically identical but displayed phenotypic variation. Phylogenetic analyses based on partial calmodulin sequence showed that the Malaysian isolates clustered with global S. schenkii sensu stricto strains, in particular, of the AFLP type E. This analysis also revealed that partial calmodulin sequence alone was sufficient for classifying global S. schenckii sensu stricto strains into their respective AFLP types, from A to E. The genetically conserved S. schenkii sensu stricto species isolated from humans and cats is suggestive of a clonal strain present in Malaysia. To the best of our knowledge, this is the first report on molecular identification of Sporothrix schenkii strains from human infections in Malaysia. Further studies are required in order to elucidate the clonal nature of Malaysian S. schenkii isolates. Our findings indicate the presence of a predominant S. schenkii genotype in the environment, causing infections in both cats and humans in Malaysia.
    Matched MeSH terms: Molecular Epidemiology
  15. Ngui R, Hassan NA, Nordin NMS, Mohd-Shaharuddin N, Chang LY, Teh CSJ, et al.
    Acta Trop, 2020 Apr;204:105334.
    PMID: 31926914 DOI: 10.1016/j.actatropica.2020.105334
    BACKGROUND: Entamoeba is a free-living protozoan parasitic species that infect a variety of hosts. In humans, Entamoeba histolytica is the causative agent of amoebiasis. Entamoeba species has also been reported in dogs. However, little is known about the molecular epidemiology and the specific species of this parasite in dogs globally, including Malaysia. As dogs are important companion animals for the indigenous community, and close contact with dogs is part of the natural living conditions for this community, this study aims to determine the prevalence and molecular epidemiology of Entamoeba species in human and dogs in Malaysia.

    METHOD: The presence of Entamoeba species was examined in 504 fresh fecal samples, collected randomly from 411 humans and 93 dogs using microscopy and polymerase chain reaction (PCR) amplifying 16 s ribosomal RNA (rRNA). Data was analyzed using appropriate statistical analysis.

    RESULTS: The microscopy data showed an overall occurrence of Entamoeba species of 26.3% (108/411) and 36.6% (34/93) in humans and dogs respectively. In humans, the most common species was a single infection of E. dispar (26.5%; 13/49), followed by E. histolytica and E. moshkovskii, (20.4% for each species respectively). Double infection of E. dispar + E. moshkovskii was detected at 10.2%, followed by E. dispar + E. histolytica (8.2%) and E. moshkovskii and E. histolytica (6.1%). 8.2% of the samples had triple infection with all three species. In animals, E. moshkovskii (46.7%) was the most common species detected, followed by E. histolytica, and E. dispar, at 20.0% and 13.3% respectively. Double infection with E. moshkovskii + E. histolytica and a triple infection were found in 2 samples (13.3%) and 1 (6.7%) sample respectively. Risk factor analysis showed that members of the community who used untreated water were more prone to be infected with Entamoeba.

    CONCLUSION: This study provides information on the species-specific occurrence of Entamoeba infection, the potential risk factors and their zoonotic potential to humans. This is the first report to describe the molecular occurrence of Entamoeba species in dogs in Malaysia. The presence of pathogenic Entamoeba species implies that dogs could be a reservoir or mechanical host for human amoebiasis. Further studies need to be conducted to better understand the transmission dynamics and public health significance of Entamoeba species in human and animal hosts.

    Matched MeSH terms: Molecular Epidemiology
  16. Zhu X, Chen H, Li S, Wang LC, Wu DR, Wang XM, et al.
    Front Microbiol, 2020;11:778.
    PMID: 32457710 DOI: 10.3389/fmicb.2020.00778
    Melioidosis is a common infectious disease in Southeast Asia and Northern Australia. In Hainan, several cases have been reported, but no systematic study has yet been done on the molecular epidemiology profiles of the organism. An investigation of the molecular epidemiology links and population structure of Burkholderia pseudomallei would help to better understand the clonally of the isolates and differences among them. In this study, multilocus variable-number tandem repeat analysis (MLVA), and multilocus sequence typing (MLST) were applied to examine the epidemiological relatedness and population structure of 166 B. pseudomallei isolates obtained during 2002-2014 in Hainan, China. Both the MLVA_4 and MLST approaches had high discriminatory power for this population, with diversity indices of 0.9899 and 0.9457, respectively. However, the MLVA_4 assay showed a higher discriminatory power than the MLST approach, and a variable-number tandem repeat (VNTR3 933) found by the MLVA approach was the most useful in discriminating strains from this province. A total of 166 strains yielded 99 MLVA_4 genotypes, of which 34 genotypes were shared by 101 isolates, for a clustering rate of 60.8% (101/166), which suggested that some cases may have a common source. Additionally, 65 isolates showed distinct genotypes, indicating that more than 39.2% (65/166) of melioidosis cases in Hainan had epidemiologically unrelated or sporadic characteristics. The 166 isolates were resolved into 48 STs, of which five STs (ST55, -70, -46, -50, and -58) were here found to be predominant. Phylogenetic analysis of 116 isolates conducted using the eBURST v3 segregated the 48 STs into eight groups with ST50 as predicted founder, and 21 STs were found to be singletons, which suggest that the strains in the Hainan region represent a high diversity of ST clones, indicating that many B. pseudomallei clone groups are endemic to this region. Moreover, ST50 had 5 SLV, 7 DLV, 6 TLV, and 29 satellite STs and formed a radial expansion pattern, suggesting that the melioidosis epidemic in this study was mainly caused by the clonal expansion of ST 50. Phylogenetic analysis on global scale suggests that China's isolates are closely related to isolates from Southeast Asia, particularly from Thailand and Malaysia.
    Matched MeSH terms: Molecular Epidemiology
  17. Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, et al.
    Vet Microbiol, 2019 Oct;237:108408.
    PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408
    Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
    Matched MeSH terms: Molecular Epidemiology
  18. Zaw MT, Emran NA, Ibrahim MY, Suleiman M, Awang Mohd TA, Yusuff AS, et al.
    J Microbiol Immunol Infect, 2019 Aug;52(4):563-570.
    PMID: 29428381 DOI: 10.1016/j.jmii.2018.01.003
    BACKGROUND: Cholera is an important health problem in Sabah, a Malaysian state in northern Borneo; however, Vibrio cholerae in Sabah have never been characterized. Since 2002, serogroup O1 strains having the traits of both classical and El Tor biotype, designated as atypical El Tor biotype, have been increasingly reported as the cause of cholera worldwide. These variants are believed to produce clinically more severe disease like classical strains.

    PURPOSE: The purpose of this study is to investigate the genetic diversity of V.cholerae in Sabah and whether V.cholerae in Sabah belong to atypical El Tor biotype.

    METHODS: ERIC-PCR, a DNA fingerprinting method for bacterial pathogens based on the enterobacterial repetitive intergenic consensus sequence, was used to study the genetic diversity of 65 clinical V.cholerae O1 isolates from 3 districts (Kudat, Beluran, Sandakan) in Sabah and one environmental isolate from coastal sea water in Kudat district. In addition, we studied the biotype-specific genetic traits in these isolates to establish their biotype.

    RESULTS: Different fingerprint patterns were seen in isolates from these three districts but one of the patterns was seen in more than one district. Clinical isolates and environmental isolate have different patterns. In addition, Sabah isolates harbor genetic traits specific to both classical biotype (ctxB-1, rstRCla) and El Tor biotype (rstRET, rstC, tcpAET, rtxC, VC2346).

    CONCLUSION: This study revealed that V.cholerae in Sabah were genetically diverse and were atypical El Tor strains. Fingerprint patterns of these isolates will be useful in tracing the origin of this pathogen in the future.

    Matched MeSH terms: Molecular Epidemiology
  19. Niek WK, Teh CSJ, Idris N, Thong KL, Ponnampalavanar S
    Jpn J Infect Dis, 2019 Jul 24;72(4):228-236.
    PMID: 30814457 DOI: 10.7883/yoken.JJID.2018.289
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common nosocomial pathogens, causing mild to severe infections. This study aimed to determine the genotypic and phenotypic characteristics of clinical MRSA isolates collected from a teaching hospital from 2014 - 2015. These isolates were genotyped by multilocus sequence typing, staphylococcal cassette chromosomal mec (SCCmec) typing, virulence genes detection, and pulsed-field gel electrophoresis; they were phenotyped based on their antibiotics susceptibility profiles. The most prevalent sequence type was ST22. ST3547 was identified from a blood isolate from 2015. Three SCCmec types (III in 26.26%, IV in 70.71%, and V in 3.03% isolates) were detected. Agr type I, II, and III were also detected among the isolates. The most prevalent virulence genes found were hemolysin (100%) and intracellular adhesion (91.9%). At least one staphylococcal enterotoxin was detected in 83 (83.8%) isolates. All the isolates were susceptible to vancomycin (minimum inhibitory concentration ≤ 2 μg/mL). Statistical analysis revealed a significant increase in hypertension (p = 0.035), dyslipidemia and obesity (p = 0.046), and previous exposure to any quinolone (p = 0.010) cases over the two-year period. The emergence and circulation of community-associated MRSA variants were observed in our hospital.
    Matched MeSH terms: Molecular Epidemiology
  20. Barkham T, Zadoks RN, Azmai MNA, Baker S, Bich VTN, Chalker V, et al.
    PLoS Negl Trop Dis, 2019 06;13(6):e0007421.
    PMID: 31246981 DOI: 10.1371/journal.pntd.0007421
    BACKGROUND: In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia.

    METHODOLOGY/PRINCIPAL FINDINGS: We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China.

    CONCLUSIONS: GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture.

    Matched MeSH terms: Molecular Epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links