Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Zulperi D, Sijam K
    Plant Dis, 2014 Feb;98(2):275.
    PMID: 30708756 DOI: 10.1094/PDIS-03-13-0321-PDN
    During March 2011 to June 2012, 50 banana plants of cultivar Musa × paradisiaca 'Horn' with Moko disease symptoms were randomly sampled in 12 different locations of 5 outbreak states in Peninsular Malaysia comprising Kedah, Selangor, Pahang, Negeri Sembilan, and Johor, with disease incidence exceeding 90% in some severely affected plantations. The disease symptoms observed in the infected plants included yellowing and wilting of the oldest leaves, which became necrotic, and eventually led to their dieback or collapse. The pulp of banana fruits also became discolored and exuded bacterial ooze. Vascular tissues in pseudostems were discolored. Fragments from symptomatic plant samples were excised and cultured on Kelman's-tetrazolium salt (TZC) medium. Twenty positive samples produced fluidal colonies that were either entirely white or white with pink centers after incubation for 24 to 48 h at 28°C on Kelman's-TZC medium and appeared as gram-negative rods after Gram staining. They were also positive for potassium hydroxide (KOH), Kovacs oxidase, and catalase tests, but negative for utilization of disaccharides and hexose alcohols, which are characteristics of biovar 1 Ralstonia solanacearum. For the pathogenicity test, 30 μl of 108 CFU/ml bacterial suspension of three selected virulent strains were injected into banana (Musa × paradisiaca 'Horn') leaves explants grown in plastic pots of 1,440 cm3 volume in a greenhouse, with temperature range from 26 to 35°C. Leaves that were infiltrated with sterile distilled water served as a negative control. Inoculations with all isolates were performed in three replications, as well as the uninoculated control leaves explants. The inoculated plants produced the same symptoms as observed on naturally diseased samples, whereas control plants remained asymptomatic. Strain cultures were re-isolated and possessed the morphological and biochemical characteristics as previously described. PCR amplification using race 2 R. solanacearum primers ISRso19-F (5'-TGGGAGAGGATGGCGGCTTT-3') and ISRso19-R (5'-TGACCCGCCTTTCGGTGTTT-3') (3) produced a 1,900-bp product from DNA of all bacterial strains. BLAST searches resulted that the sequences were 95 to 98% identical to published R. solanacearum strain race 2 insertion sequence ISRso19 (GenBank Accession No. AF450275). These genes were later deposited in GenBank (KC812051, KC812052, and KC812053). Phylotype-specific multiplex PCR (Pmx-PCR) and Musa-specific multiplex PCR (Mmx-PCR) were performed to identify the phylotype and sequevar of all isolates (4). Pmx-PCR showed that all isolates belonged to phylotype II, whereas Mmx-PCR showed that they belonged to phylotype II sequevar 4 displaying 351-bp amplicon. Although there were previously extensive studies on R. solanacearum associated with bacterial wilt disease of banana crops in Malaysia, none related to Moko disease has been reported (1,2). The result has a great importance to better understand and document R. solanacearum race 2 biovar 1, since banana has been identified as the second most important commercial fruit crop with a high economic value in Malaysia. References: (1) R. Khakvar et al. Plant Pathol. J. 7:162, 2008. (2) R. Khakvar et al. Am. J. Agri. Biol. Sci. 3:490, 2008. (3) Y. A. Lee and C. N. Khor. Plant Pathol. Bull. 12:57, 2003. (4) P. Prior et al. Pages 405-414 in: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. The American Phytopathological Society, St. Paul, MN, 2005.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  2. Zeti Norfidiyati Salmuna, Murnihayati Hassan, Habsah Hasan, Zakuan Zainy Deris
    MyJurnal
    Carpanenamase-producing Enterobacteriaceae (CPE) has emerged as a threat to hospitalized patients. Phenotypic test such as Modified hodge test was less sensitive and specific especially to detect blaNDM-1 which is the most predominant genotype in this region. Nucleic acid amplification technology offers improved specificity and sensitivity. Failed amplification due to the presence of inhibitors is a limitation. In this study, we tried to use previous method described by Villumseen et al with some modification using another DNA extraction kit. Methods: Ten mls of sterile whole blood taken from nearly expired blood bag from blood bank was spiked with 200 μl of 0.5mcFarland bacterial suspension from thirty-six confirmed isolates of blaNDM-1 carbapenamase-producing Klebsiella pneumoniae in an aerobic Bactec Plus and incubated until the growth was detected. The blood specimen was subjected to DNA extraction method using Macherey-Nachel, Nucleospin® Blood QuickPure followed with multiplex PCR. Results: Out of the 36 isolates, 12 isolates revealed blaNDM-1 , 9 isolates revealed blaNDM-1 and blaOXA-48, 7 isolates revealed blaNDM-1, blaVIM and blaKPC genotypes that were amplified at cycle threshold of less than 30. Another 8 isolates could not pick up any genotypes possibly due to pipetting error as all the internal control were amplified. Eight true negative gram negative isolates underwent same procedure and none amplified at a cycle threshold less than 30. Conclusion: This modified method was proved to give a high yield of CPE genotypes with the cycle threshold was set at less than or equal to 30 and able to overcome the presence of PCR inhibitors.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  3. Zarizal S, Yeo CC, Faizal GM, Chew CH, Zakaria ZA, Jamil Al-Obaidi MM, et al.
    Trop Med Int Health, 2018 08;23(8):905-913.
    PMID: 29873865 DOI: 10.1111/tmi.13090
    BACKGROUND: This study aimed to profile the antimicrobial susceptibility and presence of resistance and virulence genes of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA nasal carriage, by means of genotypic analyses, in students of a tertiary institution in the state of Terengganu, east coast of Malaysia.

    METHODS: A total of 370 agricultural biotechnology students from Universiti Sultan Zainal Abidin in Besut, Terengganu, were enrolled in this study. Antimicrobial susceptibility profiles were evaluated by standard methods. PCR detection of resistance and virulence genes was performed on S. aureus that were methicillin-resistant, macrolide-lincosamide-streptogramin B (MLSB )-positive phenotype and/or positive for the leukocidin (pvl) gene followed by staphylococcal cassette chromosome mec (SCCmec), staphylococcal protein A (spa) and accessory gene regulator (agr) typing.

    RESULTS: One hundred and nineteen of 370 students carried S. aureus (32%); 18 of the isolates were MRSA (15%). Erythromycin resistance was detected in 20% (24/119) of which 15% (18/119) were MRSA and 5% (6/119) MSSA. Among the 24 erythromycin-resistant isolates, D-test was positive in 29% (7/24) displaying inducible MLSB , whereas the remaining 71% (17/24) showed constitutive MLSB phenotypes. Nine (7.6%) of 119 isolates were pvl positive: 44% MRSA (4/9) and 56% MSSA (5/9). Staphylococcal surface protein sasX gene was present in 92% of MRSA and 8% of MSSA isolates. The majority of MRSA isolates were agr type I (15/18; 83%). Five spa types identified with spa t037 were predominant, followed by spa types (t304 and t8696) as newly reported Malaysian MRSA in a community setting.

    CONCLUSION: The presence of MRSA with SCCmec of hospital-associated features and globally recognised spa types in community setting is worrisome. Furthermore, the presence of MLSB strains among multidrug-resistant (MDR) S. aureus with sasX as well as pvl-positive isolates highlights the potential risk of a community setting in facilitating the dissemination of both virulence and resistance determinants.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  4. Zarina Mohd Zawawi, Tengku Rogayah Tengku Abdul Rashid, Amir Hussien Adiee, Murni Maya Sari, Ravindran Thayan
    MyJurnal
    Introduction: Dengue virus (DENV), Zika virus (ZIKV) and Chikungunya virus (CHIKV) are Arboviruses that are transmitted by the same vector, Aedes aegypti. Dengue has become a global problem since the Second World War and is common in more than 110 countries. In Malaysia, dengue is a major disease burden as total economic costs to the country as a result of dengue is close to RM1.05 billion in 2010 and estimated to rise to 1.3 billion by 2020. Apart from Dengue, Zika and Chikungunya are the other important mosquito borne diseases in Malaysia. The aim of this study was to develop a multiplex real-time assay for simultaneous detection of DENV, ZIKV and CHIKV in clinical specimens. Methods: The published singleplex protocols were used with key modifications to implement a triplex assay. A one-step multiplex real-time RT-PCR assay was developed that can simultaneously detect RNA of DENV, ZIKV and CHIKV with good performance for a routine diagnostic use. The assay was evaluated for inter- and intra-reproducibility by mean CT value. The diagnostic sensitivity was tested with 135 archived samples which had been defined positive or negative by routine singleplex assays. Whole blood, plasma and urines were used in this study. Results: Intra- and inter-reproducibility and sensitivity varied from 0.10% to 4.73% and from 0.45% to 5.98% for each virus respectively. The specificity of detection was 100%. The multiplex real-time RT-PCR assay showed concordance with test results performed by routine singleplex assays. No cross reaction was observed for any of the clinical samples. Conclusion: The development of a rapid, sensitive and specific molecular assay for DENV, ZIKV and CHIKV infections will produce a greater diagnostic capacity in our laboratory. This multiplex approach is cost effective and robust with the concurrent detection of 3 viruses of public health concern.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  5. Zam Zureena Mohd Rani, Nor Azian Abdul Murad, Saberi Saimun, Sri Noraima Othman, Rahman Jamal, Sue-Mian Then, et al.
    Neurology Asia, 2018;23(2):137-144.
    MyJurnal
    Background: The HLA-B*15:02 polymorphism in epileptic patients is known to be associated with carbamazepine-induced Stevens-Johnson syndrome (SJS). The prevalence of HLA-B*15:02 polymorphism seemed to be ethnic-specific with a higher frequency of HLA-B*15:02 in Asian compared to the Europeans. This study was performed to determine the frequency of the HLA-B*15:02 polymorphism in epileptic patients at the Chancellor Tuanku Muhriz Hospital-UKM Medical Centre (HCTM-UKMMC) using high resolution melting-real time PCR (HRM-QPCR) method.
    Methods: We performed a fast and effective in-house high resolution melting-real time polymerase chain reaction method and compared it with the conventional multiplex-PCR method. The specificity and sensitivity of each test were also determined using DNA from saliva.
    Results: Using the conventional multiplexPCR approach for screening, 25 out of 64 (39.1%) epileptic patients were positive for HLA-B*15:02. However, using the HRM-QPCR technique, 24/64 (37.5%) of the patients were positive. The one patient who tested positive by the multiplex-PCR but negative using the HRM-QPCR turned out to be negative by DNA sequencing. The HRM-QPCR and DNA sequencing showed 100% sensitivity and specificity. The multiplex-PCR showed 100% sensitivity and 98.4% specificity compared to both HRM-QPCR and DNA sequencing. The HRM-QPCR is also more cost-effective (multiplex-PCR ($25.15 USD/test).
    Conclusion: Our result suggested that multiplex PCR, HRM-QPCR and Sanger sequencing can be used for detection of HLA-B*15:02. However, a qualitative method such as multiplex PCR should be confirmed with other quantitative methods such as HRM-QPCR and Sanger sequencing.
    Keywords: Epilepsy, carbamazepine-induced Steven Johnson syndrome, multiplex-polymerase chain reaction, high resolution melting-real time polymerase chain reaction (HRM-QPCR), DNA sequencing
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  6. Zahari Z, Salleh MR, Zahri Johari MK, Musa N, Ismail R
    Malays J Med Sci, 2011 Oct;18(4):44-57.
    PMID: 22589672 MyJurnal
    The dopamine D2 receptor gene (DRD2) plays a role in many diseases such as schizophrenia, Parkinson's disease, and addictive behaviour. Methods currently available for the detection of DRD2 polymorphisms are costly and cannot detect all 8 polymorphisms of our research interest simultaneously (Val96Ala, Leu141Leu, Val154Ile, Pro310Ser, Ser311Cys, TaqI A, A-241G, and -141C Ins/Del). Therefore, we developed a nested multiplex polymerase chain reaction (PCR) for simultaneous detection of these polymorphisms.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  7. Yida Z, Imam MU, Ismail M, Ismail N, Hou Z
    Drug Des Devel Ther, 2015;9:3951-9.
    PMID: 26251574 DOI: 10.2147/DDDT.S87772
    Edible bird's nest (EBN) is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD-) induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipoprotein (oxLDL), adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count) were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  8. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  9. Tsai MH, Chan CK, Chang YC, Lin CH, Liou CW, Chang WN, et al.
    Front Neurol, 2018;9:515.
    PMID: 30034362 DOI: 10.3389/fneur.2018.00515
    Objective: Focal epilepsy is the most common subtype of epilepsies in which the influence of underlying genetic factors is emerging but remains largely uncharacterized. The purpose of this study is to determine the contribution of currently known disease-causing genes in a large cohort (n = 593) of common focal non-lesional epilepsy patients. Methods: The customized focal epilepsy gene panel (21 genes) was based on multiplex polymerase chain reaction (PCR) and sequenced by Illumina MiSeq platform. Results: Eleven variants (1.85%) were considered as pathogenic or likely pathogenic, including seven novel mutations. There were three SCN1A (p.Leu890Pro, p.Arg1636Ter, and p.Met1714Val), three PRRT2 (two p.Arg217Profs*8 and p.Leu298Pro), two CHRNA4 (p.Ser284Leu, p.Ile321Asn), one DEPDC5 (p.Val516Ter), one PCDH19 (p.Asp233Asn), and one SLC2A1 (p.Ser414Ter) variants. Additionally, 16 other rare variants were classified as unknown significance due to inconsistent phenotype or lack of segregation data. Conclusion: Currently known focal epilepsy genes only explained a very small subset of focal epilepsy patients. This indicates that the underlying genetic architecture of focal epilepsies is very heterogeneous and more novel genes are likely to be discovered. Our study highlights the usefulness, challenges and limitations of using the multi-gene panel as a diagnostic test in routine clinical practice in patients with focal epilepsy.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  10. Tiew WT, Chen YC, Hsiao HL, Chen CL, Chen CJ, Chiu CH
    J Microbiol Immunol Infect, 2023 Aug;56(4):688-694.
    PMID: 36681556 DOI: 10.1016/j.jmii.2023.01.009
    BACKGROUND/PURPOSE: Precise detection of respiratory pathogens by molecular method potentially may shorten the time to diagnose and reduce unnecessary antibiotic use.

    METHODS: Medical records of hospitalized children from January 2020 to June 2021 with acute respiratory illness who received a FilmArray RP for respiratory pathogens were reviewed and compared with data from diagnosis-matched patients without receiving the test.

    RESULTS: In total, 283 patients and 150 diagnosis-matched controls were included. Single pathogen was detected in 84.3% (193/229) of the patients. The most common pathogen was human rhinovirus/enterovirus (31.6%, 84/266), followed by respiratory syncytial virus (18.8%, 50/266) and adenovirus (15%, 40/266). Although antimicrobial days of therapy (DOT) was significantly longer in FilmArray group than the control [7.1 ± 4.9 days vs 5.7 ± 2.7 days, P = 0.002], the former showed a higher intensive care unit (ICU) admission rate (3.9% vs 0%; P = 0.010). All ICU admissions were in FilmArray RP-positive group. There was no difference in antimicrobial DOT between FilmArray RP-positive and the negative groups, in all admissions, even after excluding ICU admissions. Antimicrobial DOT was shorter in the positive than negative group in patients with lower respiratory tract infections without admission to ICU [median (IQR): 6 (4-9) days vs 9 (4-12) days, P = 0.047].

    CONCLUSIONS: Shorter antimicrobial DOTs were identified in children with lower respiratory tract infection admitted to general pediatric ward and with an identifiable respiratory pathogen, indicating a role of the multiplex PCR in reducing antimicrobial use for children with respiratory tract infection.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods
  11. Thung TY, Mahyudin NA, Basri DF, Wan Mohamed Radzi CW, Nakaguchi Y, Nishibuchi M, et al.
    Poult Sci, 2016 Aug 01;95(8):1888-93.
    PMID: 27118863 DOI: 10.3382/ps/pew144
    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/veterinary
  12. Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, et al.
    Front Microbiol, 2017;8:2697.
    PMID: 29379488 DOI: 10.3389/fmicb.2017.02697
    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  13. Thong KL, Teh CS, Chua KH
    Trop Biomed, 2014 Dec;31(4):689-97.
    PMID: 25776594 MyJurnal
    The present study aims to develop a system which consists of four pairs of primers that specifically detects Salmonella spp., Salmonella serovar Typhi and Salmonella serovar Paratyphi A with an internal amplification control. The system, when applied in Polymerase Chain Reaction (PCR) under specific conditions, reaction mixture and cycling temperatures produced four bands; 784 bp, 496 bp, 332 bp and 187 bp. The DNA band 784 bp is present in all Salmonella spp., while the bands of 496 bp and 332 bp are only present in S. Paratyphi A and S. Typhi, respectively. An internal amplification control as indicated by the 187 bp shows the system is working in optimum condition in all the tests. This multiplex PCR was evaluated on 241 bacterial cultures and 691 naturally contaminated samples. Overall, this multiplex PCR detection system provides a single step for simultaneous detection of DNAs of Salmonella spp., S. Typhi and S. Paratyphi A.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*; Multiplex Polymerase Chain Reaction/standards
  14. Thanh TT, Anh NT, Tham NT, Van HM, Sabanathan S, Qui PT, et al.
    Virol J, 2015 Jun 09;12:85.
    PMID: 26050791 DOI: 10.1186/s12985-015-0316-2
    BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response.

    METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients.

    RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed.

    CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*; Multiplex Polymerase Chain Reaction/standards
  15. Tang, J-Y-H., Farhana Sakinah, M.R., Nakaguchi, Y., Nishibuchi, M., Chai, L-C., New, C.Y., et al.
    Food Research, 2018;2(5):447-452.
    MyJurnal
    This goal of this study was to investigate the presence of Vibrio cholerae in street food,
    namely satar and otak-otak, using Loop-Mediated Isothermal Amplification (LAMP),
    multiplex Polymerase Chain Reaction (mPCR) and conventional plating on Thiosulphate
    Citrate Bile-Salt Sucrose (TCBS) agar methods. A total of 78 satar and 35 otak-otak were
    purchased from different districts of Terengganu (Besut, Setiu, Kuala Terengganu and
    Kemaman). V. cholerae was found in satar with LAMP (10.3%), mPCR (10.3%) and
    plating (0%). No V. cholerae was found in otak-otak using the three methods. This might
    be due to V. cholerae able to survive in satar after grilling due to its thickness which may
    contribute to undercooking. This study concluded that low presence of V. cholerae in satar
    and otak-otak can be detected by molecular methods but not the conventional plating
    method. LAMP assay is a useful tool for rapid detection of pathogens in food due to its
    simplicity, highly sensitive and visual interpretation capability. Though the prevalence of
    V. cholerae was low in the samples, proper handling of this food will help in reducing the
    risk of acquiring infection from V. cholerae in contaminated samples.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  16. Tang TH, Ahmed SA, Musa M, Zainuddin ZF
    World J Microbiol Biotechnol, 2013 Dec;29(12):2389-95.
    PMID: 23807412 DOI: 10.1007/s11274-013-1407-0
    Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction*
  17. Tan JL, Nordin S, Besari AM
    Malays J Med Sci, 2017 Oct;24(5):119-123.
    PMID: 29386980 MyJurnal DOI: 10.21315/mjms2017.24.5.14
    Introduction: Tuberculosis is the second leading cause of death under the category of infectious diseases, after the human immunodeficiency virus (HIV). Tuberculous meningitis (TBM) constitutes about 5% of all extrapulmonary disease worldwide. This report describes a case of Tuberculous meningitis with rare presentation in a 28-year-old woman, who was treated based on a collection of her social background, clinical findings and Multiplex PCR of tuberculosis.

    Case presentation: A 28-year-old Malay woman with no significant medical history presented to HUSM with one month history of on and off fever, two weeks history of generalised limbs weakness and one week history of dysphagia. She was reported to have experienced visual hallucination and significant weight loss. Her laboratory result is significant for leukocytosis, elevated ESR and hypernatremia. Non-enhanced and contrast CT scan of the brain showed severe bilateral frontal cerebral atrophy. Cerebral spinal fluid (CSF) for multiplex PCR for Mycobacterium tuberculosis complex was positive. She was promptly started on anti-TB regime combined with dexamethasone. Subsequent follow-up showed significant improvement.

    Conclusion: This is a rare clinical manifestation of Tuberculous meningitis that demonstrates the importance of recognising and initiating the treatment early to reduce disabilities and improve clinical outcome.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  18. Suria, M. S., Adlin Azlina, A. K., Mohd Afendy, A. T., Zamri, I.
    MyJurnal
    Shiga toxin-producing E. coli (STEC) is an important foodborne pathogen causing diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome in humans. STEC is an implicated in the vast majority of outbreaks, widely via consumption of STEC contaminated beef, as important vehicle of transmission of this organism to human. The E. coli O157:H7 serotype is traditionally identified by serological identification of the somatic antigen (O157) and structural flagella (H7). In this study, the bacteria were identified as STEC serotype O157:H7 with three primer pairs that amplified fragments of secD, rfbE and fliC genes in PCR assays. These primer pairs specifically amplified different sizes of target genes: a 244bp region of the E. coli diagnostic marker gene (secD); a 317bp region of the O157 lipopolysacharide (LPS) gene (rfbE); and a 381bp region of the H7 flagellin gene (fliC). The singleplex, duplex and triplex PCR assay developed in this study have a sensitivity limit at 2.8 x 103, 2.8 x 105 and 2.8 x 107 CFU/ml of E. coli O157:H7, respectively. Sensitivity to detect trace amount of E. coli O157:H7 DNA was reduced as the number of primer used was increased for competing to the same DNA template.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  19. Sultana S, Hossain MAM, Naquiah NNA, Ali ME
    PMID: 30028648 DOI: 10.1080/19440049.2018.1500719
    Gelatin is widely used in pharmaceuticals as a protective coating, such as soft and hard capsule shells. However, the animal source of gelatin is a sensitive issue because certain gelatins such as porcine and bovine gelatins are not welcome in Halal, Kosher and Hindus' consumer goods. Recently, we have documented DNA barcoding and multiplex PCR platforms for discriminating porcine, bovine and fish gelatins in various fish and confectionary products; but those assays were not self-authenticating and also not tested in highly refined pharmaceutical products. To address this knowledge gap, here we report a self-authenticating multiplex PCR-restriction fragment length polymorphism (RFLP) assay to identify animal sources of various gelatin in pharmaceutical capsules. Three different restriction enzymes, BsaAI, Hpy188I and BcoDI were used to yield distinctive RFLP patterns for gelatin-based bovine (26, 94 bp), fish (97, 198 bp) and porcine (17, 70 bp) DNA in control experiments. The specificity was cross-tested against 16 non-target species and the optimised assay was used to screen gelatin sources in 30 halal-branded pharmaceuticals capsule shells. Bovine and porcine DNA was found in 27 and 3 of the 30 different capsules products. The assay was suitable for detecting 0.1 to 0.01 ng total DNA extracted from pure and mixed gelatins. The study might be useful to authenticate and monitor halal, kosher, vegetarian and Hindu compliant pharmaceuticals, foods and cosmetics.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  20. Suali L, Mohammad Salih FA, Ibrahim MY, Jeffree MSB, Thomas FM, Siew Moy F, et al.
    Hemoglobin, 2022 Nov;46(6):317-324.
    PMID: 36815306 DOI: 10.1080/03630269.2023.2169154
    β-thalassemia is a serious public health problem in Sabah due to its high prevalence. This study aimed to investigate the effects of different types of β-globin gene mutations, coinheritance with α-globin gene mutations, XmnI-Gγ, and rs368698783 polymorphisms on the β-thalassemia phenotypes in Sabahan patients. A total of 111 patients were included in this study. The sociodemographic profile of the patients was collected using a semi-structured questionnaire, while clinical data were obtained from their medical records. Gap-PCR, ARMS-PCR, RFLP-PCR, and multiplex PCR were performed to detect β- and α-globin gene mutations, as well as XmnI-Gγ and rs368698783 polymorphisms. Our data show that the high prevalence of β-thalassemia in Sabah is not due to consanguineous marriages (5.4%). A total of six different β-globin gene mutations were detected, with Filipino β°-deletion being the most dominant (87.4%). There were 77.5% homozygous β-thalassemia patients, 16.2% compound heterozygous β-thalassemia patients, and 6.3% β-thalassemia/Hb E patients. Further evaluation on compound heterozygous β-thalassemia and β-thalassemia/Hb E patients found no concomitant α-globin gene mutations and the rs368698783 polymorphism. Furthermore, the XmnI-Gγ (-/+) genotype did not demonstrate a strong impact on the disease phenotype, as only two of five patients in the compound heterozygous β-thalassemia group and two of three patients in the β-thalassemia/Hb E group had a moderate phenotype. Our findings indicate that the severity of the β-thalassemia phenotypes is closely related to the type of β-globin gene mutations but not to the XmnI-Gγ and rs368698783 polymorphisms.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links