Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Zakri, A.H.
    ASM Science Journal, 2009;3(2):200-202.
    MyJurnal
    Recent studies by the United Nations University - Institute of Advanced Studies (UNU-IAS) demonstrate that bioprospecting is taking place in Antarctica and the Southern Ocean and that related commercial applications were being marketed. The bioprospectors’ interest in Antarctica stems from two reasons. First, the lack of knowledge surrounding Antarctic biota provides opportunities to discover novel organisms of potential use to biotechnology. Second, Antarctica’s environmental extremes, such as cold temperatures, extreme aridity and salinity present conditions in which biota have evolved unique characteristics for survival (UNU-IAS 2003). Thus bioprospecting opportunities include, inter alia, the discovery of novel bioactives in species found in cold and dry lithic habitat, novel pigments found in hyper-saline lakes and antifreezes in sea-lakes (Cheng & Cheng 1999).
    Matched MeSH terms: Oceans and Seas
  2. Mustafa S
    Ambio, 2010 Nov;39(7):528-30.
    PMID: 21090008
    Marine and terrestrial ecosystems are so fundamentally different in some aspects that many of the issues concerning biodiversity cannot be interpreted using a single theory of common application to all ecosystems. Their limitation is evident when it comes to highly biodiverse and interconnected marine ecosystems such as coral reefs. Trophic links are a major factor, but space, breeding, shelter from predators, environmental cues, behavior ingrained in genotypes, genetic variability, mutations, and connectivity of marine critical habitats are also important. The importance of the connectivity of habitats such as coral reefs, seagrasses, and mangrove in biodiversity preservation should be recognized. Migratory species require corridors for gene flow and that influences diversity. The existing theories do not address the biodiversity issues related to life in the abyssal plains and deep sea trenches and the challenge posed by climate change. An accurate understanding of marine biodiversity requires comprehensive knowledge of ecological interrelationships and new perspectives that reflect the reality of global environmental change.
    Matched MeSH terms: Oceans and Seas
  3. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Oceans and Seas
  4. Shamsudin L
    Arch Physiol Biochem, 1996;104(1):36-42.
    PMID: 8724878
    Microplanktonic red tide blooms (dominated by dinoflagellates) were observed in brackish water fish ponds of Terengganu between March 1992 to January 1993. The first short-lived bloom (2-3 days) occurred in October 1992 while the second long-lived bloom (6-7 days) occurred in January 1993. The dominant dinoflagellate species comprised of Peridinium quinquecorne (> 90% total cell count) with considerable proportion of Protoperidinium excentricum. Ciliophora consisting of Tintinopsis sp. and Favella sp. were also present during the bloom period. The total ash, chlorophyll, phaeopigment, lipid and fatty acid content of the microplankton were studied. Considerable amounts (6-11% of the total fatty acid) of the polyunsaturated fatty acid 18:3w3 (linolenic acid) were present in the microplankton. However, high amounts of 20:5w3 (eicosapentanoic acid) and 22:6w3 (docosahexaenoic acid) were present with variable but usually high amounts of 22:4w6 and 22:5w6 acids. The latter microplankton bloom contained higher amounts of 20:5w3 and 22:6w3 acids than the earlier bloom. Lipid content were three to five times higher than chlorophyll a. There was an increase with successive day after bloom outbreak in the relative proportion of total C18, C20, and C22 fatty acid components. The algae microplankton contained the w3-polyunsaturated fatty acids (PUFAs) probably needed for the growth and survival rate of grazing pond animals.
    Matched MeSH terms: Oceans and Seas
  5. Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, et al.
    BMC Evol. Biol., 2017 01 18;17(1):22.
    PMID: 28100168 DOI: 10.1186/s12862-016-0849-z
    BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

    RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes.

    CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.

    Matched MeSH terms: Oceans and Seas*
  6. Gan HM, Hudson AO, Rahman AY, Chan KG, Savka MA
    BMC Genomics, 2013;14:431.
    PMID: 23809012 DOI: 10.1186/1471-2164-14-431
    Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures.
    Matched MeSH terms: Oceans and Seas*
  7. Lananan F, Jusoh A, Ali N, Lam SS, Endut A
    Bioresour Technol, 2013 Aug;141:75-82.
    PMID: 23562179 DOI: 10.1016/j.biortech.2013.03.006
    A study was performed to determine the effect of Conway and f/2 media on the growth of microalgae genera. Genera of Chlorella sp., Dunaliella sp., Isochrysis sp., Chaetoceros sp., Pavlova sp. and Tetraselmis sp. were isolated from the South China Sea. During the cultivation period, the density of cells were determined using Syringe Liquid Sampler Particle Measuring System (SLS-PMS) that also generated the population distribution curve based on the size of the cells. The population of the microalgae genera is thought to consist of mother and daughter generations since these microalgae genera reproduce by releasing small non-motile reproductive cells (autospores). It was found that the reproduction of Tetraselmis sp., Dunaliella sp. and Pavlova sp. could be sustained longer in f/2 Medium. Higher cell density was achieved by genus Dunaliella, Chlorella and Isochrysis in Conway Medium. Different genera of microalgae had a preference for different types of cultivation media.
    Matched MeSH terms: Oceans and Seas
  8. Tan, Soon Guan
    MyJurnal
    The world’s biodiversity is not distributed uniformly throughout the globe. Some areas such as the tropical rainforests, seas and coral reefs teem with the varieties of life whereas others such as some deserts and polar regions are almost devoid of them (Gaston, 2000). Malaysia, with her tropical jungles and seas, is rich with biodiversity. She is fortunate to have had eminent pioneers such as Ridley (1967), Corner (1972), Soepadmo (1972) and Whitmore (1983) to study her flora and Medway (1968) and Lim (1991) to study her fauna taxonomy. Other pioneers in Malaysian biology included Berry, Dhaliwal and Mohsin. These pioneers are then ably followed by workers such as Latiff, Kiew, Go, Khoo, Davidson, Saberi, Omar, Jambari, Idris, Zekri, Teo, Marziah, Tan, Mukherjee, Shapor, Yusoff, Azmi and many others studying the various subdisciplines of biology. In addition to the more obvious large plants and animals, microorganisms and aquatic organisms had not been neglected either. Workers such as Nawawi, Verghese, Ho and Faridah are known
    for their work on fungi while Fatimah, Phang, Japar and Anton had studied algae, seaweeds, diatoms and seagrasses. However, some of these workers have now either retired or are soon going to attain retirement age and the worrying part is that there are not many younger
    workers keen to pursue research in taxonomy and biosystematics, a prerequisite to further studies in ecology, genetics, biotechnology which in turn are prerequisites for rational conservation, management and sustainable utilization of our rich biological resources. With each passing day species are becoming extinct sometimes without us even knowing that they had ever existed. Even in a developed country such as the USA, one third of her plant and animal species are at risk of extinction (McCann, 2000). Hence, taxonomic and biosystematic studies of our plants, animals and microbes whether terrestrial or aquatic, freshwater and marine, should be priority areas. So should studies on their reproductive biology, life cycles, physiology, feeding habits, migration patterns, predators and their sensitivities to environmental changes.
    Matched MeSH terms: Oceans and Seas
  9. Tan, S.G.
    MyJurnal
    Malaysia, with her tropical jungles, mangroves and seas, is blessed with riches in biodiversity, being one of the twelve megabiodiversity countries on earth. Genetics has contributed substantially to the success of our country's agricultural production especially of rubber and palm oil. Hence, it should play a pivotal role in helping Malaysia fulfill her responsibility to identify, characterize and sustainably utilize her numerous indigenous bioresources for the benefit of humanity.
    Matched MeSH terms: Oceans and Seas
  10. Sohrabi T, Ismail A, Nabavi MB
    Bull Environ Contam Toxicol, 2010 Nov;85(5):502-8.
    PMID: 20957347 DOI: 10.1007/s00128-010-0112-z
    Surface sediments along the south of Caspian Sea were collected to evaluate the contamination of heavy metals. The result ranged (μg/g, Fe% dw): Pb(13.06-33.48); Ni(18.01-69.63); Cd(0.62-1.5); Zn(30.11-87.88); Cu(5.86-26.37) and Fe(1.8-4%) respectively. Cadmium showed higher EF when compared to other sites. Geoaccumulation Index value for Cd in most stations was classified as moderately contaminated and moderately to strongly contaminated, as well as the average of I(geo) of Cd (1.77 ± 0.35) suggested that surface sediments of Caspian coast were moderately polluted by this metal. The result of the Pearson correlation showed that there were significant positive associations between Ni, Cd and Zn (r = 0.44-0.76; p < 0.01).
    Matched MeSH terms: Oceans and Seas
  11. Mohajeri L, Aziz HA, Isa MH, Zahed MA, Mohajeri S
    Bull Environ Contam Toxicol, 2010 Jul;85(1):54-8.
    PMID: 20577869 DOI: 10.1007/s00128-010-0058-1
    Weathered crude oil (WCO) removals in shoreline sediment samples were monitored for 60 days in bioremediation experimentation. Experimental modeling was carried out using statistical design of experiments. At optimum conditions maximum of 83.13, 78.06 and 69.92% WCO removals were observed for 2, 16 and 30 g/kg initial oil concentrations, respectively. Significant variations in the crude oil degradation pattern were observed with respect to oil, nutrient and microorganism contents. Crude oil bioremediation were successfully described by a first-order kinetic model. The study indicated that the rate of hydrocarbon biodegradation increased with decrease of crude oil concentrations.
    Matched MeSH terms: Oceans and Seas
  12. Chan YKS, Affendi YA, Ang PO, Baria-Rodriguez MV, Chen CA, Chui APY, et al.
    Commun Biol, 2023 Jun 10;6(1):630.
    PMID: 37301948 DOI: 10.1038/s42003-023-05000-z
    Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
    Matched MeSH terms: Oceans and Seas
  13. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Aug;19:1477-1481.
    PMID: 30229020 DOI: 10.1016/j.dib.2018.06.020
    Air-sea flux exchanges influence the climate condition and the global carbon-moisture cycle. It is imperative to understand the fundamentals of the natural systems at the tropical coastal ocean and how the transformation takes place over the time. Hence, latent and sensible heat fluxes, microclimate variables, and surface water temperature data were collected using eddy covariance instruments mounted on a platform at a tropical coastal ocean station from November 2015 to October 2017. The research data is to gain the needful knowledge of the energy exchanges in the tropical climatic environment to further improve predictive algorithms or models. Therefore, it is intended that this data report will offer appropriate information for the Monsoonal, and diurnal patterns of latent (LE) and sensible (H) heats and hence, establish the relationship between microclimate variables on the energy fluxes at the peninsular Malaysian tropical coastal ocean.
    Matched MeSH terms: Oceans and Seas
  14. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Dec;21:13-17.
    PMID: 30310834 DOI: 10.1016/j.dib.2018.09.108
    Data on the micrometeorological parameters and Energy Fluxes at an intertidal zone of a Tropical Coastal Ocean was carried out on an installed eddy covariance instruments at a Muka head station in the north-western end of the Pinang Island (5°28'06''N, 100°12'01''E), Peninsula Malaysia. The vast source of the supply of energy and heat to the hydrologic and earth׳s energy cycles principally come from the oceans. The exchange of energies via air-sea interactions is crucial to the understanding of climate variability, energy, and water budget. The turbulent energy fluxes are primary mechanisms through which the ocean releases the heat absorbed from the solar radiations to the environment. The eddy covariance (EC) system is the direct technique of measuring the micrometeorological parameters which allow the measurement of these turbulent fluxes in the time scale of half-hourly basis at 20 Hz over a long period. The data being presented is the comparison of the two-year seasonality patterns of monsoons variability on the measured microclimate variables in the southern South China Sea coastal area.
    Matched MeSH terms: Oceans and Seas
  15. Ariffin MM, Adiana G, Bidai J, Hing LS, Nurulnadia MY, Ong MC, et al.
    Data Brief, 2019 Dec;27:104806.
    PMID: 31788520 DOI: 10.1016/j.dib.2019.104806
    Metals are natural elements existed in the environment. However, due to the rapid development of urbanisation and economic, high content of anthropogenic metals are being perceived in polluting the environment. The oceans are known to be a part of the sinking basin for anthropogenic metals ends. Dataset provided is purposely to give an overview of dissolved metals spatial distribution in the South China Sea off the east Peninsular of Malaysia during the pre-, post- and Northeast (NE) Monsoon period. Seawater samples were collected in a grid of 18 stations at 3 different water depth. Dissolved metals were pre-concentrated on-board ship using Chelex-100 resin and analysed using Inductively Coupled Plasma Mass Spectrophotometry (ICPMS). The dataset shows the effect of NE Monsoon on dissolved metals spatial distribution mainly at the area closer to the land. Therefore, this dataset could reveal the past information on anthropogenic metals intrusion in the South China Sea, since Terengganu state was recently pointed to be one of the Malaysian waterfront city. Additionally, this dataset also could help in studying the cycle of metals in the southern South China Sea waters.
    Matched MeSH terms: Oceans and Seas
  16. Segura AM, Calliari D, Lan BL, Fort H, Widdicombe CE, Harmer R, et al.
    Ecol Lett, 2017 04;20(4):471-476.
    PMID: 28239940 DOI: 10.1111/ele.12749
    Determining statistical patterns irrespective of interacting agents (i.e. macroecology) is useful to explore the mechanisms driving population fluctuations and extinctions in natural food webs. Here, we tested four predictions of a neutral model on the distribution of community fluctuations (CF) and the distributions of persistence times (APT). Novel predictions for the food web were generated by combining (1) body size-density scaling, (2) Taylor's law and (3) low efficiency of trophic transference. Predictions were evaluated on an exceptional data set of plankton with 15 years of weekly samples encompassing c. 250 planktonic species from three trophic levels, sampled in the western English Channel. Highly symmetric non-Gaussian distributions of CF support zero-sum dynamics. Variability in CF decreased while a change from an exponential to a power law distribution of APT from basal to upper trophic positions was detected. Results suggest a predictable but profound effect of trophic position on fluctuations and extinction in natural communities.
    Matched MeSH terms: Oceans and Seas
  17. Auta HS, Emenike CU, Fauziah SH
    Environ Int, 2017 May;102:165-176.
    PMID: 28284818 DOI: 10.1016/j.envint.2017.02.013
    The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics.

    CAPSULE: The concentration, distribution sources and fate of microplastics in the global marine environment were discussed, so also was the impact of microplastics on a wide range of marine biota.

    Matched MeSH terms: Oceans and Seas
  18. Teh LC, Teh LS
    Environ Manage, 2011 Apr;47(4):536-45.
    PMID: 21359523 DOI: 10.1007/s00267-011-9645-0
    Marine spatial planning tends to prioritise biological conservation targets over socio-economic considerations, which may incur lower user compliance and ultimately compromise management success. We argue for more inclusion of human dimensions in spatial management, so that outcomes not only fulfill biodiversity and conservation objectives, but are also acceptable to resource users. We propose a fuzzy logic framework that will facilitate this task- The protected area suitability index (PASI) combines fishers' spatial preferences with biological criteria to assess site suitability for protection from fishing. We apply the PASI in a spatial evaluation of a small-scale reef fishery in Sabah, Malaysia. While our results pertain to fishers specifically, the PASI can also be customized to include the interests of other stakeholders and resource users, as well as incorporate varying levels of protection.
    Matched MeSH terms: Oceans and Seas
  19. Adiana G, Shazili NA, Marinah MA, Bidai J
    Environ Monit Assess, 2014 Jan;186(1):421-31.
    PMID: 23974537 DOI: 10.1007/s10661-013-3387-9
    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.
    Matched MeSH terms: Oceans and Seas
  20. Rezaee Ebrahim Saraee K, Abdi MR, Naghavi K, Saion E, Shafaei MA, Soltani N
    Environ Monit Assess, 2011 Dec;183(1-4):545-54.
    PMID: 21594644 DOI: 10.1007/s10661-011-1939-4
    The concentrations of arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc in surface sediments collected from the east coast of peninsular Malaysia, along the South China Sea, were measured by two methods instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The obtained results were use to determine the areal distribution of the metals of in the east coast of peninsular Malaysia and potential sources of these metals to this environment. The geochemical data propose that most of the metals found in the east coast of peninsular Malaysia constitute a redistribution of territorial materials within the ecosystem. Then, the metal concentrations can be considered to be present at natural background levels in surface sediments.
    Matched MeSH terms: Oceans and Seas
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links