Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Mahdavi F, Sariah M, Maziah M
    Appl Biochem Biotechnol, 2012 Feb;166(4):1008-19.
    PMID: 22183565 DOI: 10.1007/s12010-011-9489-3
    The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants.
    Matched MeSH terms: Plant Leaves/genetics*
  2. Masura SS, Parveez GK, Ti LL
    Plant Physiol Biochem, 2011 Jul;49(7):701-8.
    PMID: 21549610 DOI: 10.1016/j.plaphy.2011.04.003
    We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.
    Matched MeSH terms: Plant Leaves/genetics
  3. Jahan MS, Nozulaidi M, Khairi M, Mat N
    J Plant Physiol, 2016 May 20;195:1-8.
    PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002
    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
    Matched MeSH terms: Plant Leaves/genetics
  4. Graham NS, Hammond JP, Lysenko A, Mayes S, O Lochlainn S, Blasco B, et al.
    Plant Cell, 2014 Jul;26(7):2818-30.
    PMID: 25082855 DOI: 10.1105/tpc.114.128603
    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
    Matched MeSH terms: Plant Leaves/genetics
  5. Omidvar V, Abdullah SN, Izadfard A, Ho CL, Mahmood M
    Planta, 2010 Sep;232(4):925-36.
    PMID: 20635097 DOI: 10.1007/s00425-010-1220-z
    The 1,053-bp promoter of the oil palm metallothionein gene (so-called MSP1) and its 5' deletions were fused to the GUS reporter gene, and analysed in transiently transformed oil palm tissues. The full length promoter showed sevenfold higher activity in the mesocarp than in leaves and 1.5-fold more activity than the CaMV35S promoter in the mesocarp. The 1,053-bp region containing the 5' untranslated region (UTR) gave the highest activity in the mesocarp, while the 148-bp region was required for minimal promoter activity. Two positive regulatory regions were identified at nucleotides (nt) -953 to -619 and -420 to -256 regions. Fine-tune deletion of the -619 to -420 nt region led to the identification of a 21-bp negative regulatory sequence in the -598 to -577 nt region, which is involved in mesocarp-specific expression. Gel mobility shift assay revealed a strong interaction of the leaf nuclear extract with the 21-bp region. An AGTTAGG core-sequence within this region was identified as a novel negative regulatory element controlling fruit-specificity of the MSP1 promoter. Abscisic acid (ABA) and copper (Cu(2+)) induced the activity of the promoter and its 5' deletions more effectively than methyl jasmonate (MeJa) and ethylene. In the mesocarp, the full length promoter showed stronger inducibility in response to ABA and Cu(2+) than its 5' deletions, while in leaves, the -420 nt fragment was the most inducible by ABA and Cu(2+). These results suggest that the MSP1 promoter and its regulatory regions are potentially useful for engineering fruit-specific and inducible gene expression in oil palm.
    Matched MeSH terms: Plant Leaves/genetics
  6. Yusuf CYL, Abdullah JO, Shaharuddin NA, Abu Seman I, Abdullah MP
    Plant Cell Rep, 2018 Feb;37(2):265-278.
    PMID: 29090330 DOI: 10.1007/s00299-017-2228-7
    KEY MESSAGE: The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.
    Matched MeSH terms: Plant Leaves/genetics
  7. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LC, et al.
    Plant Cell Rep, 2020 Nov;39(11):1395-1413.
    PMID: 32734510 DOI: 10.1007/s00299-020-02571-7
    KEY MESSAGE: Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
    Matched MeSH terms: Plant Leaves/genetics*
  8. Masani MY, Parveez GK, Izawati AM, Lan CP, Siti Nor Akmar A
    Plasmid, 2009 Nov;62(3):191-200.
    PMID: 19699761 DOI: 10.1016/j.plasmid.2009.08.002
    One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
    Matched MeSH terms: Plant Leaves/genetics
  9. Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di Cola A, et al.
    J Exp Bot, 2017 Nov 02;68(18):5045-5055.
    PMID: 29036360 DOI: 10.1093/jxb/erx331
    Natural rubber (polyisoprene) from the rubber tree Hevea brasiliensis is synthesized by specialized cells called laticifers. It is not clear how rubber particles arise, although one hypothesis is that they derive from the endoplasmic reticulum (ER) membrane. Here we cloned the genes encoding four key proteins found in association with rubber particles and studied their intracellular localization by transient expression in Nicotiana benthamiana leaves. We show that, while the cis-prenyltransferase (CPT), responsible for the synthesis of long polyisoprene chains, is a soluble, cytosolic protein, other rubber particle proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and Hevea rubber transferase 1-REF bridging protein (HRBP) are associated with the endoplasmic reticulum (ER). We also show that SRPP can recruit CPT to the ER and that interaction of CPT with HRBP leads to both proteins relocating to the plasma membrane. We discuss these results in the context of the biogenesis of rubber particles.
    Matched MeSH terms: Plant Leaves/genetics
  10. Guan Q, Yu J, Zhu W, Yang B, Li Y, Zhang L, et al.
    Gene, 2018 Mar 01;645:60-68.
    PMID: 29274907 DOI: 10.1016/j.gene.2017.12.045
    Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf.
    Matched MeSH terms: Plant Leaves/genetics
  11. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Plant Leaves/genetics
  12. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
    Matched MeSH terms: Plant Leaves/genetics
  13. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    J Plant Physiol, 2012 Oct 15;169(15):1565-70.
    PMID: 22854183 DOI: 10.1016/j.jplph.2012.07.006
    Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum.
    Matched MeSH terms: Plant Leaves/genetics
  14. Shaipulah NF, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, et al.
    Plant Physiol, 2016 Feb;170(2):717-31.
    PMID: 26620524 DOI: 10.1104/pp.15.01646
    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
    Matched MeSH terms: Plant Leaves/genetics
  15. Low ET, Rosli R, Jayanthi N, Mohd-Amin AH, Azizi N, Chan KL, et al.
    PLoS One, 2014;9(1):e86728.
    PMID: 24497974 DOI: 10.1371/journal.pone.0086728
    Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm.
    Matched MeSH terms: Plant Leaves/genetics
  16. Cheah BH, Nadarajah K, Divate MD, Wickneswari R
    BMC Genomics, 2015;16:692.
    PMID: 26369665 DOI: 10.1186/s12864-015-1851-3
    Developing drought-tolerant rice varieties with higher yield under water stressed conditions provides a viable solution to serious yield-reduction impact of drought. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success of rice molecular breeding programmes. microRNAs have received tremendous attention recently due to its importance in negative regulation. In plants, apart from regulating developmental and physiological processes, microRNAs have also been associated with different biotic and abiotic stresses. Hence here we chose to analyze the differential expression profiles of microRNAs in three drought treated rice varieties: Vandana (drought-tolerant), Aday Sel (drought-tolerant) and IR64 (drought-susceptible) in greenhouse conditions via high-throughput sequencing.
    Matched MeSH terms: Plant Leaves/genetics
  17. Sukiran NL, Ma JC, Ma H, Su Z
    Plant Mol Biol, 2019 Jan;99(1-2):161-174.
    PMID: 30604322 DOI: 10.1007/s11103-018-0810-1
    KEY MESSAGE: Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
    Matched MeSH terms: Plant Leaves/genetics
  18. Ooi SE, Feshah I, Nuraziyan A, Sarpan N, Ata N, Lim CC, et al.
    Plant Cell Rep, 2021 Jul;40(7):1141-1154.
    PMID: 33929599 DOI: 10.1007/s00299-021-02698-1
    KEY MESSAGE: Potentially embryogenic oil palms can be identified through leaf transcriptomic signatures. Differential expression of genes involved in flowering time, and stress and light responses may associate with somatic embryogenesis potential. Clonal propagation is an attractive approach for the mass propagation of high yielding oil palms. A major issue hampering the effectiveness of oil palm tissue culture is the low somatic embryogenesis rate. Previous studies have identified numerous genes involved in oil palm somatic embryogenesis, but their association with embryogenic potential has not been determined. In this study, differential expression analysis of leaf transcriptomes from embryogenic and non-embryogenic mother palms revealed that transcriptome profiles from non- and poor embryogenic mother palms were more similar than highly embryogenic palms. A total of 171 genes exhibiting differential expression in non- and low embryogenesis groups could also discriminate high from poor embryogenesis groups of another tissue culture agency. Genes related to flowering time or transition such as FTIP, FRIGIDA-LIKE, and NF-YA were up-regulated in embryogenic ortets, suggesting that reproduction timing of the plant may associate with somatic embryogenesis potential. Several light response or photosynthesis-related genes were down-regulated in embryogenic ortets, suggesting a link between photosynthesis activity and embryogenic potential. As expression profiles of the differentially expressed genes are very similar between non- and low embryogenic groups, machine learning approaches with several candidate genes may generate a more sensitive model to better discriminate non-embryogenic from embryogenic ortets.
    Matched MeSH terms: Plant Leaves/genetics*
  19. Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM
    Sci Rep, 2020 09 30;10(1):16123.
    PMID: 32999341 DOI: 10.1038/s41598-020-72997-2
    Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
    Matched MeSH terms: Plant Leaves/genetics
  20. Cheah BH, Jadhao S, Vasudevan M, Wickneswari R, Nadarajah K
    PLoS One, 2017;12(10):e0186382.
    PMID: 29045473 DOI: 10.1371/journal.pone.0186382
    A cross between IR64 (high-yielding but drought-susceptible) and Aday Sel (drought-tolerant) rice cultivars yielded a stable line with enhanced grain yield under drought screening field trials at International Rice Research Institute. The major effect qDTY4.1 drought tolerance and yield QTL was detected in the IR77298-14-1-2-10 Backcrossed Inbred Line (BIL) and its IR87705-7-15-B Near Isogenic Line (NIL) with 93.9% genetic similarity to IR64. Although rice yield is extremely susceptible to water stress at reproductive stage, currently, there is only one report on the detection of drought-responsive microRNAs in inflorescence tissue of a Japonica rice line. In this study, more drought-responsive microRNAs were identified in the inflorescence tissues of IR64, IR77298-14-1-2-10 and IR87705-7-15-B via next-generation sequencing. Among the 32 families of inflorescence-specific non-conserved microRNAs that were identified, 22 families were up-regulated in IR87705-7-15-B. Overall 9 conserved and 34 non-conserved microRNA families were found as drought-responsive in rice inflorescence with 5 conserved and 30 non-conserved families induced in the IR87705-7-15-B. The observation of more drought-responsive non-conserved microRNAs may imply their prominence over conserved microRNAs in drought response mechanisms of rice inflorescence. Gene Ontology annotation analysis on the target genes of drought-responsive microRNAs identified in IR87705-7-15-B revealed over-representation of biological processes including development, signalling and response to stimulus. Particularly, four inflorescence-specific microRNAs viz. osa-miR5485, osa-miR5487, osa-miR5492 and osa-miR5517, and two non-inflorescence specific microRNAs viz. osa-miR169d and osa-miR169f.2 target genes that are involved in flower or embryonic development. Among them, osa-miR169d, osa-miR5492 and osa-miR5517 are related to flowering time control. It is also worth mentioning that osa-miR2118 and osa-miR2275, which are implicated in the biosynthesis of rice inflorescence-specific small interfering RNAs, were induced in IR87705-7-15-B but repressed in IR77298-14-1-2-10. Further, gene search within qDTY4.1 QTL region had identified multiple copies of NBS-LRR resistance genes (potential target of osa-miR2118), subtilisins and genes implicated in stomatal movement, ABA metabolism and cuticular wax biosynthesis.
    Matched MeSH terms: Plant Leaves/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links