MATERIALS AND RESULTS: Four bioformulations consisting of dry (pesta granules, talc powder and alginate beads) and liquid formulations were evaluated for their ability to control Foc-TR4, sustain microbial populations after application and maintain microbial stability during storage. All tested bioformulations reduced disease severity (DS) by more than 43·00% with pesta granules producing the highest reduction in DS by 66·67% and the lowest area under the disease progress curve value (468·75) in a glasshouse trial. Microbial populations of DRB1 and CBF2 were abundant in the rhizosphere, rhizoplane and within the roots of bananas after pesta granules application as compared to talc powder, alginate beads and liquid formulations 84 days after inoculation (DAI). The stability of both microbial populations after 180 days of storage at 4°C was the greatest in the pesta granule formulation.
CONCLUSION: The pesta granule formulation was a suitable carrier of biological control agents (BCA) without compromising biocontrol efficacy, microbial population and storage stability as compared to other bioformulations used in this study.
SIGNIFICANCE AND IMPACT OF THE STUDY: Pesta granules could be utilized to formulate BCA consortia into biofertilizers. This formulation could be further investigated for possible applications under agricultural field settings.
RESULTS: In this experiment, thick and short hairy roots were induced at all induction sites of C. annuum while thin, elongated hairy roots appeared mostly at wound sites of C. frutescens. Overall, the hairy root induction percentages of C. frutescens were higher compared with C. annuum. Hairy root initiation was observed earliest using radicles (1st week), followed by cotyledons (2nd week), and hypocotyls (3rd week). Cotyledon explants of both species had the highest induction frequency with all strains compared with the other explants types. Strains ATCC 13333 and ATCC 15834 were the most favourable for C. frutescens while ATCC 43056 and ATCC 43057 were the most favourable for C. annuum. The interactions between the different explants and strains showed significant differences with p-values < 0.0001 in both Capsicum species.
CONCLUSIONS: Both Capsicum species were amenable to A. rhizogenes infection and hairy root induction is recommended for use as an alternative explants in future plant-based studies.
DESCRIPTION: The hemibiotroph G. boninense establishes via root contact during early stage of colonization and subsequently kills the host tissue as the disease progresses. Information on the pathogenicity factors/genes that causes BSR remain poorly understood. In addition, the molecular expressions corresponding to G. boninense growth and pathogenicity are not reported. Here, six transcriptome datasets of G. boninense from two contrasting conditions (three biological replicates per condition) are presented. The first datasets, collected from a 7-day-old axenic condition provide an insight onto genes responsible for sustenance, growth and development of G. boninense while datasets of the infecting G. boninense collected from oil palm-G. boninense pathosystem (in planta condition) at 1 month post-inoculation offer a comprehensive avenue to understand G. boninense pathogenesis and infection especially in regard to molecular mechanisms and pathways. Raw sequences deposited in Sequence Read Archive (SRA) are available at NCBI SRA portal with PRJNA514399, bioproject ID.