Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Akhter N, Aqeel M, Shazia, Irshad MK, Shehnaz MM, Lee SS, et al.
    Environ Res, 2024 Apr 15;247:118127.
    PMID: 38220075 DOI: 10.1016/j.envres.2024.118127
    Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.
    Matched MeSH terms: Poaceae/metabolism; Poaceae/chemistry
  2. Tablit S, Krache R, Amroune S, Jawaid M, Hachaichi A, Ismail AS, et al.
    J Mech Behav Biomed Mater, 2024 Apr;152:106438.
    PMID: 38359736 DOI: 10.1016/j.jmbbm.2024.106438
    Arundo donax L. is investigated in this study as a suitable reinforcing agent for PLA/PP waste blend 3D printing filament. To improve the compatibility of the fibre and polymer, the Arundo fibre was chemically modified using alkali and silane treatment. Untreated and treated fibres were extruded with Polymer blends before being 3D printed. Effect of chemical treatment on thermal, mechanical, and morphological properties of the composites was investigated. The tensile, Izod impact, and water absorption of the 3D printed specimens were also tested. The Alkali treated (ALK) and combination of alkali and silane treatment (SLN) composites displayed good results. Tensile strength and modulus of the materials increased, as well as their maintained stability in the Izod impact test, demonstrating that the incorporation of ArF did not result in a loss in performance. SEM examination supported these findings by confirming the creation of beneficial interfacial contacts between the matrix and fibre components, as demonstrated by the lack of void between the matrix and the fibre surface. Furthermore, the alkali treatment of the ArF resulted in a considerable reduction in water absorption inside the biocomposite, with a 64% reduction seen in ALK composite comparison to the untreated composite (Un). After the 43-day assessment period.
    Matched MeSH terms: Poaceae
  3. Jawad AH, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Algburi S
    Int J Phytoremediation, 2024;26(5):727-739.
    PMID: 37817463 DOI: 10.1080/15226514.2023.2262040
    In this study, the focus was on utilizing tropical plant biomass waste, specifically bamboo (BB), as a sustainable precursor for the production of activated carbon (BBAC) via pyrolysis-induced K2CO3 activation. The potential application of BBAC as an effective adsorbent for the removal of methylene blue (MB) dye from aqueous solutions was investigated. Response surface methodology (RSM) was employed to evaluate key adsorption characteristics, which included BBAC dosage (A: 0.02-0.08 g/L), pH (B: 4-10), and time (C: 2-8 min). The adsorption isotherm analysis revealed that the adsorption of MB followed the Freundlich model. Moreover, the kinetic data were well-described by the pseudo-second-order model, suggesting the role of a chemisorption process. The BBAC demonstrated a notable MB adsorption capacity of 195.8 mg/g, highlighting its effectiveness as an adsorbent. Multiple mechanisms were identified as controlling factors in MB adsorption by BBAC, including electrostatic forces, π-π stacking, and H-bonding interactions. The findings of this study indicate that BBAC derived from bamboo has the potential to be a promising adsorbent for the treatment of wastewater containing organic dyes. The employment of sustainable precursors like bamboo for activated carbon production contributes to environmentally friendly waste management practices and offers a solution for the remediation of dye-contaminated wastewater.
    Matched MeSH terms: Poaceae
  4. Preece ND, van Oosterzee P, Lawes MJ
    J Environ Manage, 2023 Jun 15;336:117645.
    PMID: 36871451 DOI: 10.1016/j.jenvman.2023.117645
    Successful cost-effective reforestation plantings depend substantially on maximising sapling survival from the time of planting, yet in reforestation programs remarkably little attention is given to management of saplings at the planting stage and to planting methods used. Critical determinants of sapling survival include their vigour and condition when planted, the wetness of the soil into which saplings are planted, the trauma of transplant shock from nursery to natural field soils, and the method and care taken during planting. While some determinants are outside planters' control, careful management of specific elements associated with outplanting can significantly lessen transplanting shock and improve survival rates. Results from three reforestation experiments designed to examine cost-effective planting methods in the Australian wet tropics provided the opportunity to examine the effects of specific planting treatments, including (1) watering regime prior to planting, (2) method of planting and planter technique, and (3) site preparation and maintenance, on sapling survival and establishment. Focusing on sapling root moisture and physical protection during planting improved sapling survival by at least 10% (>91% versus 81%) at 4 months. Survival rates of saplings under different planting treatments were reflected in longer-term survival of trees at 18-20 months, differing from a low of 52% up to 76-88%. This survival effect was evident more than 6 years after planting. Watering saplings immediately prior to planting, careful planting using a forester's planting spade in moist soil and suppressing grass competition using appropriate herbicides were critical to improved plant survival.
    Matched MeSH terms: Poaceae
  5. Siraz MMM, Das SK, Mondol MS, Alam MS, Al Mahmud J, Rashid MB, et al.
    Environ Monit Assess, 2023 Apr 17;195(5):579.
    PMID: 37067680 DOI: 10.1007/s10661-023-11223-8
    Bangladesh is a rapidly developing country, which is vulnerable to various types of pollution due to the large-scale industrial and associated human activities that might potentially affect the locally harvested foodstuffs. Therefore, the transfer factor is an essential tool to assess the safety of foodstuffs due to the presence of natural radioactivity in environmental matrix and/or strata. This is a first study of its kind conducted in a well-known region for mango farming in Bangladesh, measuring the uptake of naturally occurring radioactive materials (NORMs) by grass and mango from soil to assess the ingestion doses to humans. The HPGe gamma-ray detector was used to determine the concentrations of NORMs in samples of soil (20), grass (10), and mango (10), which were then used to calculate the transfer factors of soil to grass and soil to mango. Average activity concentrations of 226Ra, 232Th, and 40K in associated soil samples (47.27 ± 4.10, 64.49 ± 4.32, 421.60 ± 28.85) of mango and 226Ra and 232Th in associated soil samples (45.07 ± 3.93, 52.17 ± 3.95) of grass were found to exceed the world average values. The average transfer factors (TFs) for mango were obtained in the order of 40K(0.80) > 226Ra (0.61) > 232Th (0.31), and for grass, it shows the order of 40K (0.78) > 232Th (0.64) > 226Ra (0.56). However, a few values (3 mango samples and 3 grass samples) of the estimated TFs exceeded the recommended limits. Moreover, Bangladesh lacks the transfer factors for most of the food crops; therefore, calculation of TFs in the major agricultural products is required all over Bangladesh, especially the foodstuffs produced near the Rooppur Nuclear Power Plant, which is scheduled to be commissioned in 2023.
    Matched MeSH terms: Poaceae
  6. Azuddin NF, Mohamad Noor Azmy MS, Zakaria L
    Sci Rep, 2023 Mar 14;13(1):4239.
    PMID: 36918601 DOI: 10.1038/s41598-023-31291-7
    Lawn grass (Axonopus compressus) is a widely distributed grass species from the family Poaceae that is ubiquitous in Malaysia. We isolated endophytic fungi from the leaves of A. compressus and molecularly identified them as Fusarium parceramosum, Colletotrichum siamense, C. gigasporum, C. endophyticum, Curvularia lunata, Stagonospora bicolor, Calonectria gracilis, and Albifimbria verrucari. These fungal endophytes are considered host generalists, as they have been isolated from other plants and have also been reported to be latent plant pathogens. We tested the pathogenicity of selected endophytic fungal isolates on A. compressus leaves, chili (Capsicum annum), and tomato (Solanum lycopersicum), and found that they were pathogenic to wounded A. compressus leaves with low to moderate virulence, and several were pathogenic to wounded and unwounded chili and tomato fruits. This indicated that the endophytes could infect both vegetable fruits with low to very high virulence. Pathogenicity tests demonstrated that endophytic fungi from the leaves of A. compressus can become pathogenic and infect the host and other plant species. The findings also indicated that leaves of A. compressus may harbor pathogens with latent ability that can become active due to changes in environmental conditions, thereby disrupting the balance between host-endophyte antagonism.
    Matched MeSH terms: Poaceae
  7. Alghirani MM, Chung ELT, Kassim NA, Ong YL, Jesse FFA, Sazili AQ, et al.
    Trop Anim Health Prod, 2022 Nov 18;54(6):386.
    PMID: 36399259 DOI: 10.1007/s11250-022-03384-4
    The primary goal of this research was to elucidate the novel influence of Brachiaria decumbens supplementation on broiler chicken growth performance, nutritional digestibility, cecal microbiota, intestinal histomorphology, carcass characteristics, and meat quality. A total of 300 male day-old Ross 308 broiler chickens were randomly subjected to six different treatment groups having five replicates per treatment with 10 birds in each replicate. In treatment 1, broiler chickens were fed commercial diets with no added additives; in treatment 2, broiler chickens were offered commercial diets containing 100 mg/kg of the antibiotic oxytetracycline. However, in treatments 3, 4, 5, and 6, broiler chickens received similar commercial diets supplemented with 25 mg/kg, 50 mg/kg, 75 mg/kg, and 100 mg/kg of B. decumbens ground leaf powder, respectively, without antibiotics. Throughout the 42-day trial, the body weight gain and total feed intake for each replicate were recorded every week to determine the growth performance. Then, on 21th and 42nd day, ten broilers from each treatment (two in each replicate) were randomly selected and slaughtered to assess the digestibility of nutrients, histomorphology of the small intestine, the population of the cecal microbiota, carcass characteristics, as well as quality of both breast and drumstick muscle. There were differences (p 
    Matched MeSH terms: Poaceae
  8. Abdul Yamin NAA, Basaruddin KS, Salleh AF, Salim MS, Wan Muhamad WZA
    Appl Bionics Biomech, 2021;2021:8842591.
    PMID: 33603827 DOI: 10.1155/2021/8842591
    Objective: The aim of this study was to investigate the effects of surface stiffness on multisegment foot kinematics and temporal parameters during running.

    Methods: Eighteen male subjects ran on three different surfaces (i.e., concrete, artificial grass, and rubber) in both heeled running shoes (HS) and minimal running shoes (MS). Both these shoes had dissimilar sole profiles. The heeled shoes had a higher sole at the heel, a thick base, and arch support, whereas the minimal shoes had a flat base sole. Indeed, the studied biomechanical parameters responded differently in the different footwear during running. Subjects ran in recreational mode speed while 3D foot kinematics (i.e., joint rotation and peak medial longitudinal arch (MLA) angle) were determined using a motion capture system (Qualysis, Gothenburg, Sweden). Information on stance time and plantar fascia strain (PFS) was also collected.

    Results: Running on different surface stiffness was found to significantly affect the peak MLA angles and stance times for both HS and MS conditions. However, the results showed that the joint rotation angles were not sensitive to surface stiffness. Also, PFS showed no relationship with surface stiffness, as the results were varied as the surface stiffness was changed.

    Conclusion: The surface stiffness significantly contributed towards the effects of peak MLA angle and stance time. These findings may enhance the understanding of biomechanical responses on various running surfaces stiffness in different shoe conditions.

    Matched MeSH terms: Poaceae
  9. Md Hatta MA, Ghosh S, Athiyannan N, Richardson T, Steuernagel B, Yu G, et al.
    Mol Plant Microbe Interact, 2020 Nov;33(11):1286-1298.
    PMID: 32779520 DOI: 10.1094/MPMI-01-20-0018-R
    In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    Matched MeSH terms: Poaceae
  10. Taib MAA, Alias N, Jaafar M, Razak KA, Tan WK, Shahbudin IP, et al.
    Nanotechnology, 2020 Oct 23;31(43):435605.
    PMID: 32640434 DOI: 10.1088/1361-6528/aba3d8
    Arrays of TiO2 nanotubes (TiO2 NTs) with grassy surfaces were observed on titanium foil anodised at 60 V in fluorinated ethylene glycol (EG) with added hydrogen peroxide (H2O2). The grassy surface was generated by the chemical etching and dissolution of the surface of the TiO2 NTs walls, which was accelerated by the temperature increase on the addition of H2O2 . Upon annealing at 600 °C, the grassy part of the TiO2 NTs was found to consist of mostly anatase TiO2 whereas the bottom part of the anodic oxide comprised a mixture of anatase and rutile TiO2. The TiO2 NTs were then used to reduce hexavalent chromium (Cr(VI)) under ultraviolet radiation. They exhibited a rather efficient photocatalytic effect, with 100% removal of Cr(VI) after 30 min of irradiation. The fast removal of Cr(VI) was due to the anatase dominance at the grassy part of the TiO2 NTs as well as the higher surface area the structure may have. This work provides a novel insight into the photocatalytic reduction of Cr(VI) on grassy anatase TiO2 NTs.
    Matched MeSH terms: Poaceae
  11. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A
    Int J Biol Macromol, 2020 Oct 01;160:183-191.
    PMID: 32454108 DOI: 10.1016/j.ijbiomac.2020.05.170
    This work investigates the extraction of cellulose nanocrystals (CNC) from bamboo fibre as an alternative approach to utilize the waste bamboo fibre. In this study, bamboo fibre was subjected to acid hydrolysis for efficient isolation of CNC from bamboo fibre. The extracted CNC's were morphologically, characterized via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The energy Dispersive X-rays (EDX) provided the elemental composition of the prepared CNC's and X-ray diffractometer (XRD) exhibited their crystallinity. The physiochemical analysis was done via Fourier Transform Infrared (FTIR); and their thermal analysis was revealed by Thermogravimetric Analysis (TGA) and Differential scanning calorimetry (DSC). As from their morphological investigations, rod like structures of CNC's were observed under SEM analysis with higher carbon content as demonstrated by EDX, while needle shaped CNC's were observed from TEM and AFM studies. Acid hydrolysis for 45 min resulted into higher degree of crystallinity and higher yield of CNC's about 86.96% and 22% respectively. Owing to higher quality of CNC's obtained as a result of efficient and modified techniques, these can find potential usage in nanocomposites for biomedical and food packaging application.
    Matched MeSH terms: Poaceae/chemistry*
  12. Crous PW, Wingfield MJ, Chooi YH, Gilchrist CLM, Lacey E, Pitt JI, et al.
    Persoonia, 2020 Jun;44:301-459.
    PMID: 33116344 DOI: 10.3767/persoonia.2020.44.11
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
    Matched MeSH terms: Poaceae
  13. Jumaidin R, Khiruddin MAA, Asyul Sutan Saidi Z, Salit MS, Ilyas RA
    Int J Biol Macromol, 2020 Mar 01;146:746-755.
    PMID: 31730973 DOI: 10.1016/j.ijbiomac.2019.11.011
    Thermoplastic cassava starch (TPCS) is a promising alternative material to replace the non-biodegradable petroleum based polymer due to its good environmental-friendly aspect i.e. abundant, sustainable, recyclable and biodegradable in nature. However, TPCS have some limitation such as poor mechanical properties. Therefore, in the present study, cogon grass fibre (CGF) were incorporated into TPCS using compression molding. Then the fundamental properties of CFG/TPCS biopolymer composites were carried out in order to evaluate their potential as a biodegradable reinforcement. From the study it was found that, the incorporation of CFG has improved the tensile and flexural properties of the TPCS composites, while the impact strength and elongation were reduced. The thermal properties of the biocomposite were reduced as the cogon grass fibres increase from 0 to 5%. In term of morphological, SEM shows good fibre adhesion between CGF and TPCS. Soil burial test shows that incorporation of CGF into TPCS has slow down the biodegradation process of the composites. Thus, CGF/TPCS biopolymer composites can be classified as composites with great potential as environmental-friendly material that biodegradable and renewable.
    Matched MeSH terms: Poaceae/chemistry*
  14. Nabilah Mohamad Khairi, Wilson Thau Lym Yong, Julius Kulip, Kenneth Francis Rodrigues
    MyJurnal
    Conservation of plant species plays a vital role in preventing the loss of valuable plant resources. The success of conservation depends on the correct identification and characterization of plant species. Bamboo is one of the most important plants with multiple uses that have contributed to the economy and socio-economy of many people in rural areas. It is under the subfamily of Bambusoideae that includes both woody and herbaceous bamboo. Conventionally, like other plants, bamboo has been classified dependently based on morphological characteristics. However, morphological identification leads to difficulties and misclassification of bamboo species due to their infrequent flowering behaviour and peculiar reproductive biology. Since then, molecular markers have been introduced to overcome the problems associated with bamboo taxonomy and phylogeny. This paper provides an overview of the diverse, predominantly molecular techniques used to assess and determine the genetic diversity of bamboo species.
    Matched MeSH terms: Poaceae
  15. Kong, C. K., Tan, Y. N., Chye, F. Y., Sit, N. W.
    MyJurnal
    The edible shoots of Dendrocalamus asper (family Poaceae) is an underutilised food. The
    present work was conducted to evaluate the nutritional compositions, biological activities, and
    phytochemical contents of the shoots of D. asper obtained from different regions of Malaysia,
    Peninsular (DP) and East Malaysia (DS). The nutritional analysis was conducted using the
    Official Methods of Analysis of the AOAC International. All minerals were quantified using
    an inductively coupled plasma-mass spectrometer, except for potassium which was measured
    using a flame atomic absorption spectrometer. Total phenolic content (TPC) was determined
    using the Folin-Ciocalteu method. Antibacterial and antifungal activities were assayed using
    a colourimetric broth microdilution method, while antioxidant activity was tested using DPPH
    radical scavenging activity, ferric-reducing antioxidant power, and cellular antioxidant activity (CAA) assays. Enzyme inhibitory activities were examined using α-amylase and α-glucosidase. Both bamboo shoots (boiled at 100°C for 20 min) were high in moisture (> 93 g/100 g
    FW), crude protein (> 21 g/100 g DW), and crude fibre contents (> 9 g/100 g DW), but low in
    fat content (< 4 g/100 g DW). Potassium was the most abundant mineral at 205.67 and 203.83
    µg/100 g DW of bamboo shoots of DP and DS, respectively. The extracts (hexane, ethyl
    acetate, ethanol, and water) of both shoots showed stronger antifungal activity than antibacterial activity against selected human pathogens. All extracts of DP shoots demonstrated higher
    CAA in HeLa cells and α-amylase inhibitory activity than that of DS shoots. In contrast, the
    extracts of DS shoots exhibited stronger inhibition on α-glucosidase and contained higher
    TPC than that of DP shoots. The D. asper shoots obtained from the Peninsular Malaysia and
    East Malaysia contained different types of secondary metabolites which account for the differences in the biological activities. In conclusion, D. asper shoots have potential as a nutritional
    and functional food.
    Matched MeSH terms: Poaceae
  16. Toki W, Matsuo S, Pham HT, Meleng P, Lee CY
    Naturwissenschaften, 2019 Aug 27;106(9-10):50.
    PMID: 31456022 DOI: 10.1007/s00114-019-1645-6
    The cavities of bamboos (Poaceae) are used by various animals. Most of the animals access these cavities either by existing cracks or by excavating bamboos with soft walls or small, thin-walled bamboos. Only a few animals excavate into the cavities of large and thick- and hard-walled internodes of mature bamboos. We studied two lizard beetle species (Coleoptera: Erotylidae: Languriinae), Doubledaya ruficollis and Oxylanguria acutipennis, that excavate into large internode cavities of recently dead mature bamboos and have morphological modifications. We observed that females of D. ruficollis used their mandibles to bore oviposition holes on Schizostachyum sp. (mean wall thickness = 3.00 mm) and O. acutipennis did so on Dendrocalamus sp. (3.37 mm) bamboos. Previous studies suggested that the markedly asymmetrical mandibles and needle-like ovipositors of females in the genus Doubledaya are adaptive traits for excavating hard-walled bamboos for oviposition. Therefore, we measured their mandibular lengths and ovipositor lengths. D. ruficollis females had greater asymmetry in the mandibles and shorter and less-sclerotized ovipositors than females of congeners using small bamboos. In contrast, O. acutipennis females had slightly asymmetrical mandibles and elongated, well-sclerotized ovipositors. Oviposition holes of D. ruficollis were cone-shaped (evenly tapering), whereas those of O. acutipennis were funnel-shaped (tube-like at the internal apex). This suggests that D. ruficollis females excavate oviposition holes using the mandibles only, and O. acutipennis females use both the mandibles and ovipositors. These differences suggest different oviposition-associated morphological specialization for using large bamboos: the extremely asymmetrical mandibles in D. ruficollis and elongated, needle-like ovipositors in O. acutipennis.
    Matched MeSH terms: Poaceae/anatomy & histology; Poaceae/parasitology
  17. NORLIYANA FATIN OMAR, CHUAH TSE SENG
    MyJurnal
    Hand weeding continues to be one of the most laborious aspects of nursery
    maintenance. Oxygenated monoterpene, an important group of secondary metabolite found in
    essential oils, has a potential herbicidal activity that could be exploited as natural herbicide
    whereas organic mulch could delay weed emergence. Thus, this study aimed to examine the
    phytotoxicity of geraniol, an oxygenated monoterpene compound, in combination with
    lemongrass leaf mulch against three common weeds, Eleusine indica (grass), Cyperus distans
    (sedge), and Tridax procumbens (broadleaf). Greenhouse experiments were carried out by
    treating 4.0 t/ha lemongrass leaf mulch with 7.5% (v/v) geraniol compound. The pretreated
    mulch acted synergistically and inhibited the emergence and shoot growth of T. procumbens
    completely. However, the pretreated mulch exhibited a moderate inhibitory effect on C. distans
    emergence and growth. Geraniol-treated lemongrass leaf mulch acted synergistically and
    inhibited the emergence of E. indica by 72%, but it acted antagonistically and caused a 45%
    reduction of shoot biomass. The present findings suggest that geraniol-treated lemongrass leaf
    mulch has potent herbicidal activity but its phytotoxic effect is species-dependent.
    Matched MeSH terms: Poaceae
  18. Elias N, Chandren S, Razak FIA, Jamalis J, Widodo N, Wahab RA
    Int J Biol Macromol, 2018 Jul 15;114:306-316.
    PMID: 29578010 DOI: 10.1016/j.ijbiomac.2018.03.095
    The contribution of chitosan/nanocellulose (CS-NC) to the enzymatic activity of Candida rugosa lipase covalently bound on the surface of CS-NC (CRL/CS-NC) was investigated. Cellulosic material from oil palm frond leaves (OPFL) were bleached, alkaline treated and acid hydrolyzed to obtain the purified NC and used as nano-fillers in CS. XRD, Raman spectroscopy and optical fluorescence microscopic analyses revealed existence of strong hydrogen bonds between CS and the NC nanofillers. The CRLs were successfully conjugated to the surface of the CS-NC supports via imine bonds that occurred through a Schiff's based mechanism. Process parameters for the immobilization of CRL were assessed for factors temperature, concentration of glutaraldehyde and pH, to afford the highest enzyme activity to achieve maximum conversion of butyl butyrate within 3h of incubation. Conversion as high as 88% was reached under an optimized condition of 25°C, 0.3% glutaraldehyde concentration and buffer at pH7. Thermal stability of CRL/CS-NCs was 1.5-fold greater than that of free CRL, with biocatalysts reusability for up to 8 successive esterification cycles. This research provides a promising approach for expanding the use of NC from OPFL for enhancing enzyme activity in favour of an alternative eco-friendly means to synthesize butyl butyrate.
    Matched MeSH terms: Poaceae/chemistry*
  19. Chung ELT, Predith M, Nobilly F, Samsudin AA, Jesse FFA, Loh TC
    Trop Anim Health Prod, 2018 Jun 20.
    PMID: 29926360 DOI: 10.1007/s11250-018-1641-4
    Brachiaria decumbens is an extremely productive tropical grass due to its aggressive growth habit and its adaptation to a varied range of soil types and environments. As a result of the vast availability, treated B. decumbens demonstrates as a promising local material that could be utilised as an improved diet for sheep and goats. Despite the fact that the grass significantly increases weight gains in grazing farm animals, there were many reports of general ill-thrift and sporadic outbreaks of photosensitivity in livestock due to the toxic compound of steroidal saponin found in B. decumbens. Ensiling and haymaking were found to be effective in removing toxin and undesirable compounds in the grass. Biological treatments using urea, activated charcoal, polyethylene glycol, and effective microorganisms were found to be useful in anti-nutritional factor deactivation and improving the nutritive values of feedstuffs. Besides, oral administration of phenobarbitone showed some degree of protection in sheep that fed on B. decumbens pasture. In this review, we aim to determine the effect of B. decumbens toxicity and possible treatment methods on the grass to be used as an improved diet for small ruminant.
    Matched MeSH terms: Poaceae
  20. Ishigaki G, Nitthaisong P, Prasojo YS, Kobayashi I, Fukuyama K, Rahman MM, et al.
    Asian-Australas J Anim Sci, 2018 May;31(5):748-754.
    PMID: 29059721 DOI: 10.5713/ajas.17.0543
    OBJECTIVE: The preference evaluation of cattle is an important factor for estimation and improvement of the grazing amounts of newly introduced or bred grasses or cultivars in barn. This study was performed to assess the grazing behavior (the amount of grazing and/or the grazing speed) of cattle as indirect method using newly bred Brachiaria ruziziensis tetraploid strain 'OKI-1'(BR) hay as treatment group and Cloris gayana 'Callide' (CG) hay as control group. It also compared the feasibility of using behavioral differences between two groups as one criteria for evaluating preference by Japanese black cattle in barn.

    METHODS: Three experiments were carried out using 12 growing Japanese Black cattle including 6 males and 6 females. In each experiment, the four Japanese Black cattle (2 males and 2 females) were placed in separated stall and allowed to graze BR and CG in manger that was separated into two portions for about 30 min. The position and behavior of the cattle were recorded, and weighed the residual of each gay at 15 and 30 minutes after experiment start.

    RESULTS: The BR was superior to CG in chemical composition such as protein, fibers and non-fibrous carbohydrate. The cattle, over all, tended to prefer BR over CG in the first half 15 minutes in terms of the time spent and amount of grazing. Additionally, growing cattle exhibited neophilia for BR bred newly.

    CONCLUSION: These findings indicated the current approach could be applied for one of criteria to evaluate the preference of hay by Japanese black cattle under indoor housing environment.

    Matched MeSH terms: Poaceae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links