Displaying publications 1 - 20 of 182 in total

Abstract:
Sort:
  1. Norsuddin NM, Mei Sin JG, Ravintaran R, Arasaratnam S, Abdul Karim MK
    Appl Radiat Isot, 2023 Feb;192:110525.
    PMID: 36436228 DOI: 10.1016/j.apradiso.2022.110525
    This study compares the mean glandular dose (MGD) across 2D, 3D projection and Contrast-Enhanced Digital Mammography (CEDM) mammographic techniques. The important metadata were extracted from the digital mammography console. 650 subjects were clustered based on projections, age and CBT. The MGD of 2D, 3D, and CEDM was positively correlated with CBT but inversely correlated with the age factor. This study indicate MGD of CEDM was 16% and 22% lower compared to 2D and 3D techniques, respectively.
    Matched MeSH terms: Radiation Dosage
  2. Mustapha FA, Bashah FAA, Yassin IM, Fathinul Fikri AS, Nordin AJ, Abdul Razak HR
    Quant Imaging Med Surg, 2017 Jun;7(3):310-317.
    PMID: 28811997 DOI: 10.21037/qims.2017.05.03
    BACKGROUND: Kidneys and urinary bladder are common physiologic uptake sites of 18fluorine-fluorodeoxyglucose ((18)F-FDG) causing increased exposure of low energy ionizing radiation to these organs. Accurate measurement of organ dose is vital as (18)F-FDG is directly exposed to the organs. Organ dose from (18)F-FDG PET is calculated according to the injected (18)F-FDG activity with the application of dose coefficients established by International Commission on Radiological Protection (ICRP). But this dose calculation technique is not directly measured from these organs; rather it is calculated based on total injected activity of radiotracer prior to scanning. This study estimated the (18)F-FDG dose to the kidneys and urinary bladder in whole body positron emission tomography/computed tomography (PET/CT) examination by comparing dose from total injected activity of (18)F-FDG (calculated dose) and dose from organs activity based on the region of interest (ROI) (measured dose).

    METHODS: Nine subjects were injected intravenously with the mean (18)F-FDG dose of 292.42 MBq prior to whole body PET/CT scanning. Kidneys and urinary bladder doses were estimated by using two approaches which are the total injected activity of (18)F-FDG and organs activity concentration of (18)F-FDG based on drawn ROI with the application of recommended dose coefficients for (18)F-FDG described in the ICRP 80 and ICRP 106.

    RESULTS: The mean percentage difference between calculated dose and measured dose ranged from 98.95% to 99.29% for the kidneys based on ICRP 80 and 98.96% to 99.32% based on ICRP 106. Whilst, the mean percentage difference between calculated dose and measured dose was 97.08% and 97.27% for urinary bladder based on ICRP 80 while 96.99% and 97.28% based on ICRP 106. Whereas, the range of mean percentage difference between calculated and measured organ doses derived from ICRP 106 and ICRP 80 for kidney doses were from 17.00% to 40.00% and for urinary bladder dose was 18.46% to 18.75%.

    CONCLUSIONS: There is a significant difference between calculated dose and measured dose. The use of organ activity estimation based on drawn ROI and the latest version of ICRP 106 dose coefficient should be explored deeper to obtain accurate radiation dose to patients.

    Matched MeSH terms: Radiation Dosage
  3. Pang YL, Abdullah AZ
    Ultrason Sonochem, 2012 May;19(3):642-51.
    PMID: 22000097 DOI: 10.1016/j.ultsonch.2011.09.007
    Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.
    Matched MeSH terms: Radiation Dosage
  4. Bahari I, Mohsen N, Abdullah P
    J Environ Radioact, 2007;95(2-3):161-70.
    PMID: 17428589
    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.
    Matched MeSH terms: Radiation Dosage
  5. Kolo MT, Khandaker MU, Amin YM, Abdullah WH
    PLoS One, 2016;11(6):e0158100.
    PMID: 27348624 DOI: 10.1371/journal.pone.0158100
    Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10-3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10-3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal.
    Matched MeSH terms: Radiation Dosage
  6. Tela Abba H, Wan Hassan WMS, Saleh MA, Aliyu AS, Ramli AT, Abdulsalam H
    Isotopes Environ Health Stud, 2018 Oct;54(5):522-534.
    PMID: 29847152 DOI: 10.1080/10256016.2018.1474879
    The Jos Plateau has been reported to have elevated levels of natural background radiation. A few earlier studies have measured the levels of natural radioactivity for specific locations in the area. Our interest is to investigate how geology of the study area influences the activity concentrations of natural radionuclides. Thus, the activity concentrations of terrestrial radionuclides in soil samples collected across the geological formations of the Jos Plateau were determined by gamma spectrometry technique. The mean activity concentrations of 226Ra, 232Th and 40K were found to exceed their corresponding world reference values of 35, 40 and 400 Bq kg-1, respectively. Data were compared using statistical methods, analysis of variance (ANOVA) and post hoc tests. The results revealed in some instances significant influences of geological types on the activity concentrations in the area. The spatial distribution maps of activity concentrations of 226Ra, 232Th and 40K were geostatistically interpolated by ordinary Kriging method using ArcGIS software.
    Matched MeSH terms: Radiation Dosage
  7. Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YB, et al.
    PLoS One, 2015;10(10):e0140667.
    PMID: 26473957 DOI: 10.1371/journal.pone.0140667
    The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).
    Matched MeSH terms: Radiation Dosage
  8. Makhadmeh GN, Abdul Aziz A, Abdul Razak K, Abu Noqta O
    IET Nanobiotechnol, 2015 Dec;9(6):381-5.
    PMID: 26647815 DOI: 10.1049/iet-nbt.2015.0003
    This study analysed the physical effects of Cichorium Pumilum (CP), as a natural photosensitizer (PS), and Protoporphyrin IX (PpIX), as a synthetic PS, encapsulated with silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentrations of CP and PpIX, needed to destroy Red Blood Cells (RBC), were determined and the efficacy of encapsulated CP and PpIX were compared with naked CP and PpIX was verified. The results confirmed the applicability of CP and PpIX encapsulated in SiNPs on RBCs, and established a relationship between the encapsulated CP and PpIX concentration and the time required to rupture 50% of the RBCs (t50). The CP and PpIX encapsulated in SiNPs exhibited higher efficacy compared with that of naked CP and PpIX, respectively, and CP had less efficacy compared with PpIX.
    Matched MeSH terms: Radiation Dosage
  9. Muhammad BG, Jaafar MS, Azhar AR, Akpa TC
    Radiat Prot Dosimetry, 2012 Apr;149(3):340-6.
    PMID: 21642647 DOI: 10.1093/rpd/ncr230
    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.
    Matched MeSH terms: Radiation Dosage
  10. Rizk C, Askounis P, Okyar HB, Sangau JK, Baradaran S, Al Fares E, et al.
    Radiat Prot Dosimetry, 2020 Aug 28;190(2):217-225.
    PMID: 32696972 DOI: 10.1093/rpd/ncaa093
    This paper presents the results of the evaluation of the uncertainty in measurement of the personal dose equivalent, Hp(10), at nine individual monitoring services (IMSs) in Asia and the Pacific region. Different types of passive dosemeters were type-tested according to the International Electrotechnical Commission 62387 requirements. The uncertainty in measurement was calculated using the Guide to the Expression of Uncertainty in Measurement approach. Expanded uncertainties ranged between 24 and 86% (average = 38%) for Hp(10) values around 1 mSv and between 14 and 40% (average = 27%) for doses around the annual dose limit, Hp(10) = 20 mSv. The expanded uncertainties were lower than the 1.5 factor in either direction proposed by the International Commission on Radiological Protection for doses near the relevant dose limits. This indicates an acceptable level of uncertainty for all participating IMSs. Uncertainty evaluation will help the IMSs to acknowledge the accuracy of their measurements.
    Matched MeSH terms: Radiation Dosage
  11. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS
    J Environ Radioact, 2013 Oct;124:130-40.
    PMID: 23727880 DOI: 10.1016/j.jenvrad.2013.04.013
    Extensive environmental survey and measurements of gamma radioactivity in the soil samples collected from Segamat District were conducted. Two gamma detectors were used for the measurements of background radiation in the area and the results were used in the computation of the mean external radiation dose rate and mean weighted dose rate, which are 276 nGy h(-1) and 1.169 mSv y(-1), respectively. A high purity germanium (HPGe) detector was used in the assessment of activity concentrations of (232)Th, (226)Ra and (40)K. The results of the gamma spectrometry range from 11 ± 1 to 1210 ± 41 Bq kg(-1) for (232)Th, 12 ± 1 to 968 ± 27 Bq kg(-1) for (226)Ra, and 12 ± 2 to 2450 ± 86 Bq kg(-1) for (40)K. Gross alpha and gross beta activity concentrations range from 170 ± 50 to 4360 ± 170 Bq kg(-1) and 70 ± 20 to 4690 ± 90 Bq kg(-1), respectively. These results were used in the plotting of digital maps (using ARCGIS 9.3) for isodose. The results are compared with values giving in UNSCEAR 2000.
    Matched MeSH terms: Radiation Dosage
  12. Khandaker MU, Mohd Nasir NL, Asaduzzaman K, Olatunji MA, Amin YM, Kassim HA, et al.
    Chemosphere, 2016 Jul;154:528-536.
    PMID: 27085312 DOI: 10.1016/j.chemosphere.2016.03.121
    Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.
    Matched MeSH terms: Radiation Dosage
  13. Hashim S, Ibrahim SA, Che Omar SS, Alajerami YS, Saripan MI, Noor NM, et al.
    Appl Radiat Isot, 2014 Aug;90:258-60.
    PMID: 24858954 DOI: 10.1016/j.apradiso.2014.04.016
    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg-Gray cavity theory prevails.
    Matched MeSH terms: Radiation Dosage*
  14. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
    Matched MeSH terms: Radiation Dosage
  15. Ang AH
    Med J Malaysia, 1973 Dec;28(2):75-9.
    PMID: 4276302
    Matched MeSH terms: Radiation Dosage
  16. Mushtaq F, Abdullah TA, Mat R, Ani FN
    Bioresour Technol, 2015 Aug;190:442-50.
    PMID: 25794811 DOI: 10.1016/j.biortech.2015.02.055
    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.
    Matched MeSH terms: Radiation Dosage
  17. Susilawati S, Prayogi S, Arif MF, Ismail NM, Bilad MR, Asy'ari M
    Polymers (Basel), 2021 Mar 28;13(7).
    PMID: 33800592 DOI: 10.3390/polym13071065
    This study assesses the optical properties and conductivity of PVA-H3PO4 (polyvinyl alcohol-phosphoric acid) polymer film blend irradiated by gamma (γ) rays. The PVA-H3PO4 polymer film blend was prepared by the solvent-casting method at H3PO4 concentrations of 75 v% and 85 v%, and then irradiated up to 25 kGy using γ-rays from the Cobalt-60 isotope source. The optical absorption spectrum was measured using an ultraviolet-visible spectrophotometer over a wavelength range of 200 to 700 nm. It was found that the absorption peaks are in three regions, namely two peaks in the ultraviolet region (310 and 350 nm) and one peak in the visible region (550 nm). The presence of an absorption peak after being exposed to hυ energy indicates a transition of electrons from HOMO to LUMO within the polymer chain. The study of optical absorption shows that the energy band gap (energy gap) depends on the radiation dose and the concentration of H3PO4 in the polymer film blend. The optical absorption, absorption edge, and energy gap decrease with increasing H3PO4 concentration and radiation dose. The interaction between PVA and H3PO4 blend led to an increase in the conductivity of the resulting polymer blend film.
    Matched MeSH terms: Radiation Dosage
  18. Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abdeldin I, Bani Khalaf R
    J Water Health, 2019 Dec;17(6):957-970.
    PMID: 31850902 DOI: 10.2166/wh.2019.158
    The current study was conducted to measure the activity concentration of the gross alpha and beta in 87 groundwater samples collected from the productive aquifers that constitute a major source of groundwater to evaluate the annual effective dose and the corresponding health impact on the population and to investigate the quality of groundwater in Jordan. The mean activity concentration of gross alpha and beta in groundwater ranges from 0.26 ± 0.03 to 3.58 ± 0.55 Bq L-1 and from 0.51 ± 0.07 to 3.43 ± 0.46 Bq L-1, respectively. A very strong relationship was found between gross alpha and beta activity concentrations. The annual effective dose for alpha and beta was found in the range of 0.32-2.40 mSv with a mean value of 0.89 mSv, which is nine times higher than the World Health Organization (WHO) recommended limit and one and half times higher than the national regulation limit. The mean lifetime risk was found to be 45.47 × 10-4 higher than the Jordanian estimated upper-bound lifetime risk of 25 × 10-4. The data obtained in the study would be the baseline for further epidemiological studies on health effects related to the exposure to natural radioactivity in Jordan.
    Matched MeSH terms: Radiation Dosage
  19. Orio L, Alexandru L, Cravotto G, Mantegna S, Barge A
    Ultrason Sonochem, 2012 May;19(3):591-5.
    PMID: 22054912 DOI: 10.1016/j.ultsonch.2011.10.001
    Mitragyna speciosa, a tropical plant indigenous to Southeast Asia, is well known for its psychoactive properties. Its leaves are traditionally chewed by Thai and Malaysian farmers and manual labourers as it causes a numbing, stimulating effect. The present study aims to evaluate alkaloid yield and composition in the leaf extracts. For this purpose we have compared several non-conventional extraction techniques with classic procedures (room temperature or under heating). Dried M. speciosa leaves belonging to three batches of different origin (from Thailand, Malaysia and Indonesia) were extracted using ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical carbon dioxide extraction SFE-CO(2), using methanol, ethanol, water and binary mixtures. The extracts were compared using an HPLC/ESI-MS analysis of mitragynine and four other related alkaloids which were present in the alkaloid fraction. The extraction technique influences both the raw product yield and the relative alkaloid content of M. speciosa leaves. Of the several methods tested, MAE in a closed vessel at 110 °C (60 W, methanol/water 1:1) gave the highest alkaloid fraction amount, while UAE with an immersion horn at 25 °C (21.4 kHz, 50 W, methanol) showed the best yield for mitragynine. This work may prove to be a useful contribution to forensic, toxicological and pharmacognosy studies. Although the potential applications of M. speciosa alkaloids clearly need further investigation, these results may facilitate the scaling-up of their extraction.
    Matched MeSH terms: Radiation Dosage
  20. Saleh MA, Ramli AT, Alajeramie Y, Suhairul H, Aliyu AS, Basri NA
    Radiat Prot Dosimetry, 2013 Sep;156(2):246-52.
    PMID: 23538891 DOI: 10.1093/rpd/nct061
    An extensive survey was carried out for gamma dose rates (GDRs) in the Mersing district, Johor, Malaysia. The average value of GDR measured in the district was found to be 140 nGy h(-1), in the range of 40-355 nGy h(-1). The mean weighted dose rate to the population, annual effective dose equivalent, collective effective dose equivalent, lifetime cancer risk were 0.836 mSv y(-1), 0.171 mSv, 1.18 × 10(1) man Sv y(-1) and 6.98 × 10(-4) Sv y, respectively. An isodose map was produced for the district. One way analysis of variance was used to test for differences due to different geological formations present in the Mersing District.
    Matched MeSH terms: Radiation Dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links