Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL
    Avian Pathol, 1996 Dec;25(4):837-44.
    PMID: 18645902
    The nucleotide sequence of the haemagglutinin-neuraminidase (HN) glycoprotein gene of Newcastle disease virus (NDV) variant strain V4(UPM) was determined by direct genomic RNA sequencing and confirmed by cycle sequencing. The gene comprises 1996 nucleotides encoding a 615 amino acid protein of size 67.4 kDa. The nucleotide and amino acid sequences of this strain were compared with those of the parent strain V4(QUE). There are 16 nucleotide substitutions on V4(UPM), eight of which are silent mutations and another eliminated a potential Asn-linked glycosylation site in V4(UPM). In addition, an Arg (403) residue was shown to be absent in the variant strain. This deletion is thought to be significant because of its location in a highly conserved region of the HN protein.
    Matched MeSH terms: Sequence Analysis, RNA
  2. Arai YT, Takahashi H, Kameoka Y, Shiino T, Wimalaratne O, Lodmell DL
    Acta Virol., 2001;45(5-6):327-33.
    PMID: 12083333
    Thirty-four suspected rabid brain samples from 2 humans, 24 dogs, 4 cats, 2 mongooses, I jackal and I water buffalo were collected in 1995-1996 in Sri Lanka. Total RNA was extracted directly from brain suspensions and examined using a one-step reverse transcription-polymerase chain reaction (RT-PCR) for the rabies virus nucleoprotein (N) gene. Twenty-eight samples were found positive for the virus N gene by RT-PCR and also for the virus antigens by fluorescent antibody (FA) test. Rabies virus isolates obtained from different animal species in different regions of Sri Lanka were genetically homogenous. Sequences of 203 nucleotides (nt)-long RT-PCR products obtained from 16 of 27 samples were found identical. Sequences of 1350 nt of N genes of 14 RT-PCR products were determined. The Sri Lanka isolates under study formed a specific cluster that included also an earlier isolate from India but did not include the known isolates from China, Thailand, Malaysia, Israel, Iran, Oman, Saudi Arabia, Russia, Nepal, Philippines, Japan and from several other countries. These results suggest that one type of rabies virus is circulating among human, dog, cat, mongoose, jackal and water buffalo living near Colombo City and in other five remote regions in Sri Lanka.
    Matched MeSH terms: Sequence Analysis, RNA
  3. Yang F, He JF, Xian HX, Zhang HL, He YQ, Yang H, et al.
    Zhonghua Yu Fang Yi Xue Za Zhi, 2009 Sep;43(9):798-802.
    PMID: 20137564
    To isolate and identify the pathogen of Dengue fever from Shenzhen city in 2005 - 2006, and to analyze the molecular characteristics of the isolated Dengue virus strain as well as to explore its possible origin.
    Matched MeSH terms: Sequence Analysis, RNA
  4. Chan YF, Sam IC, AbuBakar S
    Infect Genet Evol, 2010 Apr;10(3):404-12.
    PMID: 19465162 DOI: 10.1016/j.meegid.2009.05.010
    Human enterovirus 71 (EV-71) is genotyped for molecular epidemiological investigation mainly using the two structural genes, VP1 and VP4. Based on these, EV-71 is divided into three genotypes, A, B and C, and within the genotypes B and C, there are further subgenotypes, B1-B5 and C1-C5. Classification using these genes is useful but gives incomplete phylogenetic information. In the present study, the phylogenetic relationships amongst all the known EV-71 and human enterovirus A (HEV-A) isolates with complete genome sequences were examined. A different tree topology involving EV-71 isolates of subgenotypes, C4 and B5 was obtained in comparison to that drawn using VP1. The nucleotide sequence divergence of the C4 isolates was 18.11% (17-20%) when compared to other isolates of subgenotype C. However, this positions the C4 isolates within the cut-off divergence value of 17-22% used to designate the virus genotypes. Hence, it is proposed here that C4 should be designated as a new genotype D. In addition, the subgenotype B5 isolates had an average nucleotide divergence of only 6.14% (4-8%) when compared to other subgenotype B4 isolates. This places the B5 isolates within the subgenotype B4. It is proposed here that the B5 isolates to be redesignated as B4. With the newly proposed genotype D and inclusion of subgenotype B5 within B4, the average nucleotide divergence between genotypes was 18.99% (17-22%). Inter- and intra-subgenotype average divergences were 12.02% (10-14%) and 3.92% (1-10%), respectively. A phylogenetic tree built using the full genome sequences is robust as it takes into consideration changes in the sequences of both the structural and non-structural genes. Similar nucleotide similarities, however, were obtained if only VP1 and 3D RNA polymerase genes were used. Furthermore, addition of 3D RNA polymerase sequences will also show recombination events. Hence, in the absence of full genome sequences, it is proposed here that a combination of VP1 and 3D RNA polymerase gene sequences be used for initial genotyping of EV-71 isolates.
    Matched MeSH terms: Sequence Analysis, RNA
  5. Abdul-Hamid NF, Hussein NM, Wadsworth J, Radford AD, Knowles NJ, King DP
    Infect Genet Evol, 2011 Mar;11(2):320-8.
    PMID: 21093614 DOI: 10.1016/j.meegid.2010.11.003
    Foot-and-mouth disease (FMD) is endemic in the countries of mainland Southeast Asia where it represents a major obstacle to the development of productive animal industries. The aim of this study was to use genetic data to determine the distribution of FMD virus (FMDV) lineages in the Southeast Asia region, and in particular identify possible sources of FMDV causing outbreaks in Malaysia. Complete VP1 sequences, obtained from 214 samples collected between 2000 and 2009, from FMD outbreaks in six Southeast Asian countries, were compared with sequences previously reported. Phylogenetic analysis of these sequences showed that there were two patterns of FMDV distribution in Malaysia. Firstly, for some lineages (O/SEA/Mya98 and serotype A), outbreaks occurred every year in the country and did not appear to persist, suggesting that these incursions were quickly eradicated. Furthermore, for these lineages FMD viruses in Malaysia were closely related to those from neighbouring countries, demonstrating the close epidemiological links between countries in the region. In contrast, for O/ME-SA/PanAsia lineage, viruses were introduced and remained to cause outbreaks in subsequent years. In particular, the recent incursion and maintenance of the PanAsia-2 sublineage into Malaysia appears to be unique and independent from other outbreaks in the region. This study is the first characterisation of FMDV in Malaysia and provides evidence for different epidemiological sources of virus introduction into the country.
    Matched MeSH terms: Sequence Analysis, RNA
  6. Cheng S, Kirton LG, Panandam JM, Siraj SS, Ng KK, Tan SG
    PLoS One, 2011;6(6):e20992.
    PMID: 21687629 DOI: 10.1371/journal.pone.0020992
    Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa.
    Matched MeSH terms: Sequence Analysis, RNA
  7. Ngui R, Ching LS, Kai TT, Roslan MA, Lim YA
    Am J Trop Med Hyg, 2012 May;86(5):837-42.
    PMID: 22556084 DOI: 10.4269/ajtmh.2012.11-0446
    Species identification of human hookworm infections among eight communities in rural areas of Peninsular Malaysia was determined during 2009-2011. Fecal samples were examined by microscopy and subsequently, the internal transcribed spacer 2 and 28S ribosomal RNA region of Necator americanus and Ancylostoma spp. were sequenced. Overall, 9.1% (58 of 634) were identified positive by microscopy for hookworm infection, and 47 (81.0%) of 58 were successfully amplified and sequenced. Sequence comparison found that N. americanus (87.2%) was the most predominant hookworm identified, followed by Ancylostoma ceylanicum (23.4%). No A. duodenale infection was detected in this study. Detection of A. ceylanicum in humans highlighted the zoonotic transmission among humans living near dogs. Thus, implementation of effective control measures for hookworm infections in future should seriously consider this zoonotic implication.
    Matched MeSH terms: Sequence Analysis, RNA
  8. Ng KT, Ong LY, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11405-6.
    PMID: 22997423
    We report here the first novel HIV-1 circulating recombinant form (CRF) 54_01B (CRF54_01B) isolated from three epidemiologically unlinked subjects of different risk groups in Malaysia. These recently sampled recombinants showed a complex genome organization composed of parental subtype B' and CRF01_AE, with identical recombination breakpoints observed in the gag, pol, and vif genes. Such a discovery highlights the ongoing active generation and spread of intersubtype recombinants involving the subtype B' and CRF01_AE lineages and indicates the potential of the new CRF in bridging HIV-1 transmission among different risk groups in Southeast Asia.
    Matched MeSH terms: Sequence Analysis, RNA
  9. Chow WZ, Al-Darraji H, Lee YM, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11398-9.
    PMID: 22997419
    A novel HIV-1 genotype designated CRF53_01B was recently characterized from three epidemiologically unrelated persons in Malaysia. Here we announced three recently isolated full-length genomes of CRF53_01B, which is likely to be phylogenetically linked to CRF33_01B, circulating widely in Southeast Asia. The genome sequences may contribute to HIV-1 molecular surveillance and future vaccine development in the region.
    Matched MeSH terms: Sequence Analysis, RNA
  10. Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS
    Nucleic Acids Res, 2014 Feb;42(3):1414-26.
    PMID: 24198247 DOI: 10.1093/nar/gkt1021
    High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samples are monitored. However, recent data uncovered severe bias in the sequencing of small non-protein coding RNA (small RNA-seq or sRNA-seq), such that the expression levels of some RNAs appeared to be artificially enhanced and others diminished or even undetectable. The use of different adapters and barcodes during ligation as well as complex RNA structures and modifications drastically influence cDNA synthesis efficacies and exemplify sources of bias in deep sequencing. In addition, variable specific RNA G/C-content is associated with unequal polymerase chain reaction amplification efficiencies. Given the central importance of RNA-seq to molecular biology and personalized medicine, we review recent findings that challenge small non-protein coding RNA-seq data and suggest approaches and precautions to overcome or minimize bias.
    Matched MeSH terms: Sequence Analysis, RNA/methods*
  11. Mohamed NA, Rashid ZZ, Wong KK
    J Clin Lab Anal, 2014 May;28(3):224-8.
    PMID: 24478138 DOI: 10.1002/jcla.21670
    BACKGROUND: Hepatitis C virus (HCV) genotyping is important for treatment and epidemiological purposes. The objective of this study was to evaluate the performance of AmpliSens(®) HCV-1/2/3-FRT kit in comparison to sequencing method for genotyping.

    METHODS: A total of 17 samples collected from December 2009 to January 2011 were analyzed. Reverse transcriptase polymerase chain reaction (PCR) was performed, followed by sequencing technique. Results were analyzed based on sequence information in GenBank. A second genotyping method (AmpliSens(®) HCV-1/2/3-FRT) was done, which differentiates HCV genotypes by means of real-time hybridization-fluorescence detection.

    RESULTS: From 17 samples, four were untypeable by AmpliSens(®) HCV-1/2/3-FRT. Eleven of 13 (84.6%) results showed concordant genotypes. A specimen that was determined as genotype 3a by sequencing was genotype 1 by the AmpliSens(®) HCV-1/2/3-FRT. Another specimen that was genotype 1 by sequencing was identified as genotype 3 by AmpliSens(®) HCV-1/2/3-FRT.

    CONCLUSION: HCV genotyping with AmpliSens(®) HCV-1/2/3-FRT using real-time PCR method provides a much simpler and more feasible workflow with shorter time compared to sequencing method. There was good concordance compared to sequencing method. However, more evaluation studies would be required to show statistical significance, and to troubleshoot discordant results. AmpliSens(®) HCV-1/2/3-FRT does differentiate between genotype but not until subtype level.

    Matched MeSH terms: Sequence Analysis, RNA
  12. Kim M, Kim WS, Tripathi BM, Adams J
    Microb Ecol, 2014 May;67(4):837-48.
    PMID: 24549745 DOI: 10.1007/s00248-014-0380-y
    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial community of tropical forest litter may be partly a product of its differing chemistry, although the unvarying climate might also play a role, as might interactions with other organisms such as fungi. The single genus Burkholderia may be seen as potentially playing a major role in decomposition and nutrient cycling in tropical forests, but apparently not in temperate forests.
    Matched MeSH terms: Sequence Analysis, RNA
  13. Yong HY, Zou Z, Kok EP, Kwan BH, Chow K, Nasu S, et al.
    Biomed Res Int, 2014;2014:467395.
    PMID: 25177691 DOI: 10.1155/2014/467395
    Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na(+) content, and Na(+)/K(+) and Na(+)/Ca(2+) ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.
    Matched MeSH terms: Sequence Analysis, RNA/methods
  14. Tan WS, Muhamad Yunos NY, Tan PW, Mohamad NI, Adrian TG, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:828971.
    PMID: 25197715 DOI: 10.1155/2014/828971
    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.
    Matched MeSH terms: Sequence Analysis, RNA
  15. Lau NS, Foong CP, Kurihara Y, Sudesh K, Matsui M
    PLoS One, 2014;9(1):e86368.
    PMID: 24466058 DOI: 10.1371/journal.pone.0086368
    The photosynthetic cyanobacterium, Synechocystis sp. strain 6803, is a potential platform for the production of various chemicals and biofuels. In this study, direct photosynthetic production of a biopolymer, polyhydroxyalkanoate (PHA), in genetically engineered Synechocystis sp. achieved as high as 14 wt%. This is the highest production reported in Synechocystis sp. under photoautotrophic cultivation conditions without the addition of a carbon source. The addition of acetate increased PHA accumulation to 41 wt%, and this value is comparable to the highest production obtained with cyanobacteria. Transcriptome analysis by RNA-seq coupled with real-time PCR was performed to understand the global changes in transcript levels of cells subjected to conditions suitable for photoautotrophic PHA biosynthesis. There was lower expression of most PHA synthesis-related genes in recombinant Synechocystis sp. with higher PHA accumulation suggesting that the concentration of these enzymes is not the limiting factor to achieving high PHA accumulation. In order to cope with the higher PHA production, cells may utilize enhanced photosynthesis to drive the product formation. Results from this study suggest that the total flux of carbon is the possible driving force for the biosynthesis of PHA and the polymerizing enzyme, PHA synthase, is not the only critical factor affecting PHA-synthesis. Knowledge of the regulation or control points of the biopolymer production pathways will facilitate the further use of cyanobacteria for biotechnological applications.
    Matched MeSH terms: Sequence Analysis, RNA
  16. Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, et al.
    Infect Genet Evol, 2015 Jan;29:216-29.
    PMID: 25445644 DOI: 10.1016/j.meegid.2014.10.032
    Virulent Newcastle disease virus (NDV) isolates from new sub-genotypes within genotype VII are rapidly spreading through Asia and the Middle East causing outbreaks of Newcastle disease (ND) characterized by significant illness and mortality in poultry, suggesting the existence of a fifth panzootic. These viruses, which belong to the new sub-genotypes VIIh and VIIi, have epizootic characteristics and do not appear to have originated directly from other genotype VII NDV isolates that are currently circulating elsewhere, but are related to the present and past Indonesian NDV viruses isolated from wild birds since the 80s. Viruses from sub-genotype VIIh were isolated in Indonesia (2009-2010), Malaysia (2011), China (2011), and Cambodia (2011-2012) and are closely related to the Indonesian NDV isolated in 2007, APMV1/Chicken/Karangasem, Indonesia (Bali-01)/2007. Since 2011 and during 2012 highly related NDV isolates from sub-genotype VIIi have been isolated from poultry production facilities and occasionally from pet birds, throughout Indonesia, Pakistan and Israel. In Pakistan, the viruses of sub-genotype VIIi have replaced NDV isolates of genotype XIII, which were commonly isolated in 2009-2011, and they have become the predominant sub-genotype causing ND outbreaks since 2012. In a similar fashion, the numbers of viruses of sub-genotype VIIi isolated in Israel increased in 2012, and isolates from this sub-genotype are now found more frequently than viruses from the previously predominant sub-genotypes VIId and VIIb, from 2009 to 2012. All NDV isolates of sub-genotype VIIi are approximately 99% identical to each other and are more closely related to Indonesian viruses isolated from 1983 through 1990 than to those of genotype VII, still circulating in the region. Similarly, in addition to the Pakistani NDV isolates of the original genotype XIII (now called sub-genotype XIIIa), there is an additional sub-genotype (XIIIb) that was initially detected in India and Iran. This sub-genotype also appears to have as an ancestor a NDV strain from an Indian cockatoo isolated in 1982. These data suggest the existence of a new panzootic composed of viruses of subgenotype VIIi and support our previous findings of co-evolution of multiple virulent NDV genotypes in unknown reservoirs, e.g. as recorded with the virulent NDV identified in Dominican Republic in 2008. The co-evolution of at least three different sub-genotypes reported here and the apparent close relationship of some of those genotypes from ND viruses isolated from wild birds, suggests that identifying wild life reservoirs may help predict new panzootics.
    Matched MeSH terms: Sequence Analysis, RNA
  17. Ng HF, Chin KF, Chan KG, Ngeow YF
    Genome, 2015 Jun;58(6):315-21.
    PMID: 26284904 DOI: 10.1139/gen-2015-0028
    suPLAUR is the transcript variant that encodes the soluble form of the urokinase plasminogen activator surface receptor (suPLAUR). This soluble protein has been shown to enhance leukocyte migration and adhesion, and its circulatory level is increased in inflammatory states. In this pilot study, we used RNA-Seq to examine the splicing pattern of PLAUR in omental adipose tissues from obese and lean individuals. Of the three transcript variants of the PLAUR gene, only the proportion of suPLAUR (transcript variant 2) increases in obesity. After removing the effects of gender and age, the expression of suPLAUR is positively correlated with body mass index. This observation was validated using RT-qPCR with an independent cohort of samples. Additionally, in our RNA-Seq differential expression analysis, we also observed, in obese adipose tissues, an up-regulation of genes encoding other proteins involved in the process of chemotaxis and leukocyte adhesion; of particular interest is the integrin beta 2 (ITGB2) that is known to interact with suPLAUR in leukocyte adhesion. These findings suggest an important role for suPLAUR in the recruitment of immune cells to obese adipose tissue, in the pathogenesis of obesity.
    Matched MeSH terms: Sequence Analysis, RNA
  18. Geoghegan JL, Tan le V, Kühnert D, Halpin RA, Lin X, Simenauer A, et al.
    J Virol, 2015 Sep;89(17):8871-9.
    PMID: 26085170 DOI: 10.1128/JVI.00706-15
    Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia.

    IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.

    Matched MeSH terms: Sequence Analysis, RNA
  19. Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N
    Mol Genet Genomics, 2015 Oct;290(5):1899-910.
    PMID: 25893418 DOI: 10.1007/s00438-015-1046-2
    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.
    Matched MeSH terms: Sequence Analysis, RNA*
  20. Choi JR, Tang R, Wang S, Wan Abas WA, Pingguan-Murphy B, Xu F
    Biosens Bioelectron, 2015 Dec 15;74:427-39.
    PMID: 26164488 DOI: 10.1016/j.bios.2015.06.065
    Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.
    Matched MeSH terms: Sequence Analysis, RNA/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links