Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Low DHW, Hitch AT, Skiles MM, Borthwick SA, Neves ES, Lim ZX, et al.
    PMID: 33948432 DOI: 10.1016/j.ijppaw.2021.04.001
    Haemosporidians infect a wide diversity of bat genera and species, yet little is known about their transmission cycles or epidemiology. Though several recent studies have focused on the genus Hepatocystis, an Old World parasite primarily infecting bats, monkeys, and squirrels, this group is still understudied with little known about its transmission and molecular ecology. These parasites lack an asexual erythrocytic stage, making them unique from the Plasmodium vertebrate life cycle. In this study, we detected a prevalence of 31% of Hepatocystis in short-nosed fruit bats (Cynopterus brachyotis) in Singapore. Phylogenetic reconstruction with a partial cytochrome b sequence revealed a monophyletic group of Hepatocystis from C. brachyotis in Malaysia, Singapore, and Thailand. There was no relationship with infection and bat age, sex, location, body condition or monsoon season. The absence of this parasite in the five other bat species sampled in Singapore indicates this Hepatocystis species may be host restricted.
    Matched MeSH terms: Vertebrates
  2. Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, et al.
    Genome Biol, 2021 04 29;22(1):120.
    PMID: 33910595 DOI: 10.1186/s13059-021-02336-9
    BACKGROUND: Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly.

    RESULTS: As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100-300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization.

    CONCLUSIONS: Our results indicate that even in the "simple" case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.

    Matched MeSH terms: Vertebrates/genetics*
  3. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
    Matched MeSH terms: Vertebrates/genetics*
  4. Williams PJ, Ong RC, Brodie JF, Luskin MS
    Nat Commun, 2021 Mar 12;12(1):1650.
    PMID: 33712621 DOI: 10.1038/s41467-021-21978-8
    Overhunting reduces important plant-animal interactions such as vertebrate seed dispersal and seed predation, thereby altering plant regeneration and even above-ground biomass. It remains unclear, however, if non-hunted species can compensate for lost vertebrates in defaunated ecosystems. We use a nested exclusion experiment to isolate the effects of different seed enemies in a Bornean rainforest. In four of five tree species, vertebrates kill many seeds (13-66%). Nonetheless, when large mammals are excluded, seed mortality from insects and fungi fully compensates for the lost vertebrate predation, such that defaunation has no effect on seedling establishment. The switch from seed predation by generalist vertebrates to specialist insects and fungi in defaunated systems may alter Janzen-Connell effects and density-dependence in plants. Previous work using simulation models to explore how lost seed dispersal will affect tree species composition and carbon storage may require reevaluation in the context of functional redundancy within complex species interactions networks.
    Matched MeSH terms: Vertebrates
  5. Luskin MS, Johnson DJ, Ickes K, Yao TL, Davies SJ
    Proc Biol Sci, 2021 03 10;288(1946):20210001.
    PMID: 33653133 DOI: 10.1098/rspb.2021.0001
    Large vertebrates are rarely considered important drivers of conspecific negative density-dependent mortality (CNDD) in plants because they are generalist consumers. However, disturbances like trampling and nesting also cause plant mortality, and their impact on plant diversity depends on the spatial overlap between wildlife habitat preferences and plant species composition. We studied the impact of native wildlife on a hyperdiverse tree community in Malaysia. Pigs (Sus scrofa) are abnormally abundant at the site due to food subsidies in nearby farmland and they construct birthing nests using hundreds of tree saplings. We tagged 34 950 tree saplings in a 25 ha plot during an initial census and assessed the source mortality by recovering tree tags from pig nests (n = 1672 pig-induced deaths). At the stand scale, pigs nested in flat dry habitats, and at the local neighbourhood scale, they nested within clumps of saplings, both of which are intuitive for safe and efficient nest building. At the stand scale, flat dry habitats contained higher sapling densities and higher proportions of common species, so pig nesting increased the weighted average species evenness across habitats. At the neighbourhood scale, pig-induced sapling mortality was associated with higher heterospecific and especially conspecific sapling densities. Tree species have clumped distributions due to dispersal limitation and habitat filtering, so pig disturbances in sapling clumps indirectly caused CNDD. As a result, Pielou species evenness in 400 m2 quadrats increased 105% more in areas with pig-induced deaths than areas without disturbances. Wildlife induced CNDD and this supported tree species evenness, but they also drove a 62% decline in sapling densities from 1996 to 2010, which is unsustainable. We suspect pig nesting is an important feature shaping tree composition throughout the region.
    Matched MeSH terms: Vertebrates
  6. Williams SH, Scriven SA, Burslem DFRP, Hill JK, Reynolds G, Agama AL, et al.
    Conserv Biol, 2020 08;34(4):934-942.
    PMID: 31840279 DOI: 10.1111/cobi.13450
    Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
    Matched MeSH terms: Vertebrates
  7. Perera E, Rodriguez-Viera L, Montero-Alejo V, Perdomo-Morales R
    Trop Life Sci Res, 2020 Jul;31(2):187-209.
    PMID: 32922675 DOI: 10.21315/tlsr2020.31.2.10
    Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.
    Matched MeSH terms: Vertebrates
  8. Khan AH, Noordin R
    Eur J Clin Microbiol Infect Dis, 2020 Jan;39(1):19-30.
    PMID: 31428897 DOI: 10.1007/s10096-019-03680-2
    Infection by Toxoplasma gondii is prevalent worldwide. The parasite can infect a broad spectrum of vertebrate hosts, but infection of fetuses and immunocompromised patients is of particular concern. Easy-to-perform, robust, and highly sensitive and specific methods to detect Toxoplasma infection are important for the treatment and management of patients. Rapid diagnostic methods that do not sacrifice the accuracy of the assay and give reproducible results in a short time are highly desirable. In this context, rapid diagnostic tests (RDTs), especially with point-of-care (POC) features, are promising diagnostic methods in clinical microbiology laboratories, especially in areas with minimal laboratory facilities. More advanced methods using microfluidics and sensor technology will be the future trend. In this review, we discuss serological and molecular-based rapid diagnostic tests for detecting Toxoplasma infection in humans as well as animals.
    Matched MeSH terms: Vertebrates
  9. Hempolchom C, Reamtong O, Sookrung N, Srisuka W, Sakolvaree Y, Chaicumpa W, et al.
    Acta Trop, 2019 Jun;194:82-88.
    PMID: 30922801 DOI: 10.1016/j.actatropica.2019.03.026
    Although several studies have reported pharmacological and immunological activity, as well as the role of black flies in transmitting pathogens to vertebrate hosts through salivary glands (SG) during blood feeding, SG proteomes of the anthropophilic black flies in Thailand have never been reported. Therefore, this study determined the SG proteomes of female S. nigrogilvum and S. nodosum. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional (2-DE) gels containing separated SG proteins of individual species were subjected to liquid chromatography-tandem mass spectrometry (LCMS/MS) and an orthologous protein search from eukaryotic organism, nematocera and simuliidae databases for total protein identification. SDS-PAGE and protein staining revealed at least 13 and 9 major protein bands in the SGs of female S. nigrogilvum and S. nodosum, respectively, as well as several minor ones. The 2-DE demonstrated a total of 56 and 41 protein spots for S. nigrogilvum and S. nodosum, respectively. Most of the proteins obtained in both species were enzymes involved in blood feeding, including proteases, apyrases, hyaluronidases, aminopeptidase and elastase. The results obtained in this study provided a new body of knowledge for a better understanding on the role of salivary gland proteins in these black fly species in Thailand.
    Matched MeSH terms: Vertebrates
  10. Granados A, Bernard H, Brodie JF
    J Anim Ecol, 2019 06;88(6):892-902.
    PMID: 30895613 DOI: 10.1111/1365-2656.12983
    Periods of extreme food abundance, such as irregular masting events, can dramatically affect animal populations and communities, but the extent to which anthropogenic disturbances alter animal responses to mast events is not clear. In South-East Asia, dipterocarp trees reproduce in mast fruiting events every 2-10 years in some of the largest masting events on the planet. These trees, however, are targeted for selective logging, reducing the intensity of fruit production and potentially affecting multiple trophic levels. Moreover, animal responses to resource pulse events have largely been studied in systems where the major mast consumers have been extirpated. We sought to evaluate the influence of human-induced habitat disturbance on animal responses to masting in a system where key mast consumers remain extant. We used motion-triggered camera traps to quantify terrestrial mammal and bird occurrences in Sabah, Malaysian Borneo, relative to variation in fruit biomass from 69 plant families during a major (2014) and minor (2015) masting event and a non-mast year (2013), in both logged and unlogged forests. Bearded pigs (Sus barbatus) showed the clearest responses to masting and occurrence rates were highest in unlogged forest in the year following the major mast, suggesting that the pulse in fruit availability increased immigration or reproduction. We also detected local-scale spatial tracking of dipterocarp fruits in bearded pigs in unlogged forest, while this was equivocal in other species. In contrast, pigs and other vertebrate taxa in our study showed limited response to spatial or temporal variation in fruit availability in logged forest. Our findings suggest that vertebrates, namely bearded pigs, may respond to masting via movement and increased reproduction, but that these responses may be attenuated by habitat disturbance.
    Matched MeSH terms: Vertebrates
  11. Mah MQ, Kuah MK, Ting SY, Merosha P, Janaranjani M, Goh PT, et al.
    PMID: 30831207 DOI: 10.1016/j.cbpb.2019.01.011
    The capacity of crustaceans to biosynthesise long-chain polyunsaturated fatty acids has yet to be fully defined, due to the lack of evidence on the functional activities of enzymes involved in desaturation or elongation of fatty acid substrates. We report here the cloning and in vitro functional analysis of an elongase from the orange mud crab, Scylla olivacea. Sequence and phylogenetic analysis placed the elovl close to the vertebrate Elovl1 and Elovl7 clade, which is distinct from the other remaining five Elovl families. The elongase was also clustered together with several elongases from crustaceans and insects. This elongase showed activities towards 16:1n-7, and at lower rate, linoleic acid (18:2n-6) and linolenic acid (18:3n-3). To our knowledge this is the first description of a functional enzyme involved in biosynthesis of long-chained polyunsaturated fatty acids in a crustacean species. Expression of the S. olivacea elovl7-like mRNA was prominent in stomach, intestine and gill tissues, due to the need to regulate the permeability of epithelial tissue through modification of fatty acid compositions. The implication of our findings, in terms of ability of Crustacea phylum to biosynthesise polyunsaturated fatty acids is discussed.
    Matched MeSH terms: Vertebrates
  12. Frank K, Krell FT, Slade EM, Raine EH, Chiew LY, Schmitt T, et al.
    Ecol Lett, 2018 08;21(8):1229-1236.
    PMID: 29938888 DOI: 10.1111/ele.13095
    At the global scale, species diversity is known to strongly increase towards the equator for most taxa. According to theory, a higher resource specificity of consumers facilitates the coexistence of a larger number of species and has been suggested as an explanation for the latitudinal diversity gradient. However, only few studies support the predicted increase in specialisation or even showed opposite results. Surprisingly, analyses for detritivores are still missing. Therefore, we performed an analysis on the degree of trophic specialisation of dung beetles. We summarised 45 studies, covering the resource preferences of a total of 994503 individuals, to calculate the dung specificity in each study region. Our results highlighted a significant (4.3-fold) increase in the diversity of beetles attracted to vertebrate dung towards the equator. However, their resource specificity was low, unrelated to diversity and revealed a highly generalistic use of dung resources that remained similar along the latitudinal gradient.
    Matched MeSH terms: Vertebrates
  13. Tsutsui K, Osugi T, Son YL, Ubuka T
    Gen Comp Endocrinol, 2018 08 01;264:48-57.
    PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024
    Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
    Matched MeSH terms: Vertebrates/metabolism
  14. Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, et al.
    J Anim Ecol, 2018 Jan;87(1):293-300.
    PMID: 28791685 DOI: 10.1111/1365-2656.12728
    Ants are diverse and abundant, especially in tropical ecosystems. They are often cited as the agents of key ecological processes, but their precise contributions compared with other organisms have rarely been quantified. Through the removal of food resources from the forest floor and subsequent transport to nests, ants play an important role in the redistribution of nutrients in rainforests. This is an essential ecosystem process and a key energetic link between higher trophic levels, decomposers and primary producers. We used the removal of carbohydrate, protein and seed baits as a proxy to quantify the contribution that ants, other invertebrates and vertebrates make to the redistribution of nutrients around the forest floor, and determined to what extent there is functional redundancy across ants, other invertebrate and vertebrate groups. Using a large-scale, field-based manipulation experiment, we suppressed ants from c. 1 ha plots in a lowland tropical rainforest in Sabah, Malaysia. Using a combination of treatment and control plots, and cages to exclude vertebrates, we made food resources available to: (i) the whole foraging community, (ii) only invertebrates and (iii) only non-ant invertebrates. This allowed us to partition bait removal into that taken by vertebrates, non-ant invertebrates and ants. Additionally, we examined how the non-ant invertebrate community responded to ant exclusion. When the whole foraging community had access to food resources, we found that ants were responsible for 52% of total bait removal whilst vertebrates and non-ant invertebrates removed the remaining 48%. Where vertebrates were excluded, ants carried out 61% of invertebrate-mediated bait removal, with all other invertebrates removing the remaining 39%. Vertebrates were responsible for just 24% of bait removal and invertebrates (including ants) collectively removed the remaining 76%. There was no compensation in bait removal rate when ants and vertebrates were excluded, indicating low functional redundancy between these groups. This study is the first to quantify the contribution of ants to the removal of food resources from rainforest floors and thus nutrient redistribution. We demonstrate that ants are functionally unique in this role because no other organisms compensated to maintain bait removal rate in their absence. As such, we strengthen a growing body of evidence establishing ants as ecosystem engineers, and provide new insights into the role of ants in maintaining key ecosystem processes. In this way, we further our basic understanding of the functioning of tropical rainforest ecosystems.
    Matched MeSH terms: Invertebrates/physiology; Vertebrates/physiology
  15. Shrivastava AK, Kumar S, Smith WA, Sahu PS
    Trop Parasitol, 2017 Jan-Jun;7(1):8-17.
    PMID: 28459010 DOI: 10.4103/2229-5070.202290
    Cryptosporidiosis is a gastrointestinal illness caused by the protozoan parasite Cryptosporidium species, which is a leading cause of diarrhea in a variety of vertebrate hosts. The primary mode of transmission is through oral routes; infections spread with the ingestion of oocysts by susceptible animals or humans. In humans, Cryptosporidium infections are commonly found in children and immunocompromised individuals. The small intestine is the most common primary site of infection in humans while extraintestinal cryptosporidiosis occurs in immunocompromised individuals affecting the biliary tract, lungs, or pancreas. Both innate and adaptive immune responses play a critical role in parasite clearance as evident from studies with experimental infection in mice. However, the cellular immune responses induced during human infections are poorly understood. In this article, we review the currently available information with regard to epidemiology, diagnosis, therapeutic interventions, and strategies being used to control cryptosporidiosis infection. Since cryptosporidiosis may spread through zoonotic mode, we emphasis on more epidemiological surveillance-based studies in developing countries with poor sanitation and hygiene. These epidemiological surveys must incorporate fecal source tracking measures to identify animal and human populations contributing significantly to the fecal burden in the community, as mitigation measures differ by host type.
    Matched MeSH terms: Vertebrates
  16. Lynam AJ, Porter L, Campos-Arceiz A
    Conserv Biol, 2016 10;30(5):931-932.
    PMID: 27341391 DOI: 10.1111/cobi.12781
    Southeast Asia is a biodiversity hotspot where the risk of extinction for many vertebrates is high (Duckworth et al. 2012) due to the loss and degradation of habitats resulting from burgeoning human populations and economies, expansion of agricultural development, and unsustainable harvest of wildlife and other natural resources (Sodhi et al. 2010). Important conservation challenges in the region, especially in the terrestrial and coastal realms, include reducing the loss and degradation of native vegetation and reducing the risk of species' extinction and extirpation. This will involve mitigating impacts of land-use change, reducing human-wildlife conflicts, improving management of protected areas, resolving land-tenure conflicts, increasing community engagement in in resource conservation, and ultimately developing proconservation behaviors in Asian societies as a whole. This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Vertebrates
  17. Colwell RK, Gotelli NJ, Ashton LA, Beck J, Brehm G, Fayle TM, et al.
    Ecol Lett, 2016 09;19(9):1009-22.
    PMID: 27358193 DOI: 10.1111/ele.12640
    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.
    Matched MeSH terms: Vertebrates/physiology
  18. Zouache MA, Eames I, Samsudin A
    PLoS One, 2016;11(3):e0151490.
    PMID: 26990431 DOI: 10.1371/journal.pone.0151490
    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac(0.67), where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma.
    Matched MeSH terms: Vertebrates*
  19. Haniza MZ, Adams S, Jones EP, MacNicoll A, Mallon EB, Smith RH, et al.
    PeerJ, 2015;3:e1458.
    PMID: 26664802 DOI: 10.7717/peerj.1458
    The brown rat (Rattus norvegicus) is a relatively recent (<300 years) addition to the British fauna, but by association with negative impacts on public health, animal health and agriculture, it is regarded as one of the most important vertebrate pest species. Anticoagulant rodenticides were introduced for brown rat control in the 1950s and are widely used for rat control in the UK, but long-standing resistance has been linked to control failures in some regions. One thus far ignored aspect of resistance biology is the population structure of the brown rat. This paper investigates the role population structure has on the development of anticoagulant resistance. Using mitochondrial and microsatellite DNA, we examined 186 individuals (from 15 counties in England and one location in Wales near the Wales-England border) to investigate the population structure of rural brown rat populations. We also examined individual rats for variations of the VKORC1 gene previously associated with resistance to anticoagulant rodenticides. We show that the populations were structured to some degree, but that this was only apparent in the microsatellite data and not the mtDNA data. We discuss various reasons why this is the case. We show that the population as a whole appears not to be at equilibrium. The relative lack of diversity in the mtDNA sequences examined can be explained by founder effects and a subsequent spatial expansion of a species introduced to the UK relatively recently. We found there was a geographical distribution of resistance mutations, and relatively low rate of gene flow between populations, which has implications for the development and management of anticoagulant resistance.
    Matched MeSH terms: Vertebrates
  20. Arasu A, Kumaresan V, Sathyamoorthi A, Chaurasia MK, Bhatt P, Gnanam AJ, et al.
    Microbiol Res, 2014 Nov;169(11):824-34.
    PMID: 24780642 DOI: 10.1016/j.micres.2014.03.005
    In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus.
    Matched MeSH terms: Vertebrates/classification; Vertebrates/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links