Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Mandary MB, Masomian M, Ong SK, Poh CL
    Viruses, 2020 Jun 17;12(6).
    PMID: 32560288 DOI: 10.3390/v12060651
    Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
    Matched MeSH terms: Viral Plaque Assay
  2. Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL
    Virus Res, 2017 06 15;238:243-252.
    PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010
    One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
    Matched MeSH terms: Viral Plaque Assay
  3. Yee PT, Tan KO, Othman I, Poh CL
    Virol J, 2016 11 28;13(1):194.
    PMID: 27894305
    BACKGROUND: Hand, foot and mouth disease is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. EV-A71 infection is associated with high fever, rashes and ulcers but more severe symptoms such as cardiopulmonary failure and death have been reported. The lack of vaccines highlighted the urgency of developing preventive agents against EV-A71. The molecular determinants of virulent phenotypes of EV-A71 is unclear. It remains to be investigated if specific molecular determinants would affect the cell culture growth characteristics of the EV-A71 fatal strain in Rhabdomyosarcoma (RD) cells.

    RESULTS: In this study, several genetically modified sub-genotype B4 EV-A71 mutants were constructed by site-directed mutations at positions 158, 475, 486, 487 and 5262 or through partial deletion of the 5'-NTR region (∆ 11 bp from nt 475 to 486) to generate a deletion mutant (PD). EV-A71 mutants 475 and PD caused minimal cytopathic effects, produced lowest viral RNA copy number, viral particles as well as minimal amount of viral protein (VP1) in RD cells when compared to mutants 158, 486, 487 and 5262.

    CONCLUSIONS: The molecular determinants of virulent phenotypes of EV-A71 sub-genotype B4 strain 41 (5865/Sin/000009) were found to differ from the C158 molecular determinant reported for the fatal EV-A71 sub-genotype B1 strain (clinical isolate 237). The site-directed mutations (SDM) introduced at various sites of the cDNA affected growth of the various mutants when compared to the wild type. Lowest viral RNA copy number, minimal number of plaques formed, higher infectious doses required for 50% lethality of RD cells and much reduced VP1 of the EV-A71 sub-genotype B4 strain 41 genome was attained in mutants carrying SDM at position 475 and through partial deletion of 11 bp at the 5'-NTR region.

    Matched MeSH terms: Viral Plaque Assay
  4. Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S
    Virol J, 2017 11 21;14(1):229.
    PMID: 29162124 DOI: 10.1186/s12985-017-0895-1
    BACKGROUND: The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated.

    METHODS: Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay.

    RESULTS: Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity.

    CONCLUSIONS: Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.

    Matched MeSH terms: Viral Plaque Assay
  5. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Viral Plaque Assay
  6. Cecilia D, Gould EA
    Virology, 1991 Mar;181(1):70-7.
    PMID: 1704661
    The Sarawak strain of Japanese encephalitis virus (JE-Sar) is virulent in 3-week-old mice when inoculated intraperitoneally. The nucleotide sequence for the envelope glycoprotein (E) of this virus was determined and compared with the published sequences of four other strains. There were several silent nucleotide differences and five codon changes. Monoclonal antibodies (MAbs) against the E protein of JE-Sar virus were prepared and characterized. MAb-resistant mutants of JE-Sar were selected to determine if mutations in the E protein gene could affect its virulence for mice. Eight mutants were isolated using five different MAbs that identified virus-specific or group-reactive epitopes on the E protein. The mutants lost either complete or partial reactivity with selecting MAb. Several showed decreased virulence in 3-week-old mice after intraperitoneal inoculation. Two (r27 and r30) also showed reduced virulence in 2-week-old mice. JE-Sar and the derived mutants were comparable in their virulence for mice, when inoculated intracranially. Mutant r30 but not r27 induced protective immunity in adult mice against intracranial challenge with parent virus. However, r27-2 did induce protective immunity against itself. Nucleotide sequencing of the E coding region for the mutants revealed single base changes in both r30 and r27 resulting in a predicted change from isoleucine to serine at position 270 in r30 and from glycine to aspartic acid at position 333 in r27. The altered capacity of the mutants to induce protective immunity is consistent with the immunogenicity changes predicted by computer analysis using the Protean II program.
    Matched MeSH terms: Viral Plaque Assay
  7. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Viral Plaque Assay
  8. Shirako Y, Yamaguchi Y
    J Gen Virol, 2000 May;81(Pt 5):1353-60.
    PMID: 10769079
    Sagiyama virus (SAG) is a member of the genus Alphavirus in the family Togaviridae, isolated in Japan from mosquitoes in 1956. We determined the complete nucleotide sequence of the SAG genomic RNA from the original stock virus which formed a mixture of plaques with different sizes, and that from a full-length cDNA clone, pSAG2, infectious RNA transcripts from which formed uniform large plaques on BHK-21 cells. The SAG genome was 11698 nt in length exclusive of the 3' poly(A) tail. Between the complete nucleotide sequences of the full-length cDNA clone, pSAG2, and the consensus sequence from the original stock virus, there were nine amino acid differences; two each in nsP1, nsP2 and E1, and three in E2, some of which may be responsible for plaque phenotypic variants in the original virus stock. SAG was most closely related to Ross River virus among other alphaviruses fully sequenced, with amino acid sequence identities of 86% in the nonstructural proteins and of 83% in the structural proteins. The 3' terminal 280 nt region of SAG was 82% identical to that of Barmah Forest virus, which was otherwise not closely related to SAG. Comparison of the nucleotide sequence of SAG with partial nucleotide sequences of Getah virus (GET), which was originally isolated in Malaysia in 1955 and is closely related to SAG in serology and in biology, showed near identity between the two viruses, suggesting that SAG is a strain of GET.
    Matched MeSH terms: Viral Plaque Assay
  9. Dunster LM, Gibson CA, Stephenson JR, Minor PD, Barrett AD
    J Gen Virol, 1990 Mar;71 ( Pt 3):601-7.
    PMID: 2155996
    The ability of passage in HeLa cells to attenuate flaviviruses was investigated for three different strains of the mosquito-borne West Nile (WN) virus and two tick-borne viruses, louping-ill and Langat. One strain of WN virus, Sarawak, was attenuated 4000-fold for adult mice by intraperitoneal or intranasal challenge after six HeLa passages. The HeLa-passaged virus was also found to be antigenically different and temperature-sensitive in its growth characteristics compared with the parent. After six HeLa cell passages the Egypt 101 and Smithburn strains of WN virus lost their ability to infect monkey kidney cells and no longer killed adult mice, although inoculated animals became sick for several days. In contrast, two tick-borne flaviviruses remained as virulent for mice after six HeLa passages as the parent non-HeLa-passaged virus. Neither of the tick-borne viruses exhibited characteristics associated with temperature sensitivity. The results, therefore, indicate that the mosquito-borne, but not tick-borne, flaviviruses can be attenuated by very few passages in HeLa cells. This observation may provide a model system with which to analyse the molecular basis of attenuation and/or virulence of mosquito-borne flaviviruses.
    Matched MeSH terms: Viral Plaque Assay
  10. Tesh RB, Gajdusek DC, Garruto RM, Cross JH, Rosen L
    Am J Trop Med Hyg, 1975 Jul;24(4):664-75.
    PMID: 1155702
    Plaque reduction neutralization tests, using five group A arboviruses (chikungunya, Ross River, Getah, Bebaru and Sindbis), were done on sera from human populations in 44 Southeast Asia and Pacific island localities. Specificity of the plaque neutralization test was determined by examining convalescent sera from patients with known alphavirus infections. Chikungunya-specific neutralizing antibodies were demonstrated in sera of persons living in South Vietnam, Northern Malaysia, Indonesia (Kalimantan and Sulawesi), as well as Luzon, Marinduque, Cebu and Mindanao islands in the Philippines. Evidence of Ross River virus infection was found among populations living in West New Guinea and Papua New Guinea mainland, the Bismark Archipelago, Rossel Island and the Solomon Islands. There appeared to be no geographic overlap in the distribution of chikungunya and Ross River viruses, with the separation in their distribution corresponding with Weber's line in the Pacific. Sindbis neutralizing antibodies were found in 7 of 21 populations sampled, but in general the prevalence of infection was low. Four sera, from Vietnam, Malaysia and Mindanao gave monospecific reactions with Getah virus. No evidence of specific Bebaru virus infection was detected. The epidemiology of these five alphaviruses in Southeast Asia and the Pacific islands is discussed.
    Matched MeSH terms: Viral Plaque Assay
  11. Zeenathul NA, Mohd-Azmi ML, Ali AS, Aini I, Sheik-Omar AR, Abdul-Rahim AM, et al.
    Rev. Argent. Microbiol., 2002 Jan-Mar;34(1):7-14.
    PMID: 11942085
    Both wild-type virulent and mutant strains of pseudorabies virus (PrV) were used in this study. Mutants used were derived from the plaque purified strain PrVmAIP. A total of six drug resistant mutants, three bromodeoxyuridine (BUdR) resistant and three iododeoxyuridine (IUdR) resistant, respectively, were isolated and passaged in chicken embryo fibroblast (CEF) cells. The DNA of these PrVs were compared with the wild-type isolates by means of the restriction fragment pattern (RFP) findings produced with Bam HI, Kpn I, Hind III and Bgl II restriction enzymes (RE). Compared to the wild-type PrVs (PrV-VBA1-parental strain of PrVmAIP; PrV-VBA2; PrV-VBA3), the RFP of PrVmAIP showed the presence of mutations within the RE sites studied. Both PrV-VBA1 and PrV-VBA2 appeared to be closely related but their RFPs differed from PrV-VBA3. Significant differences either in the number, size or migrations of the DNA fragments could also be detected in the BUdR resistant strains. Even though different features of cytopathic effect (GPE) were observed in the IUdR resistant PrVs, the RFP findings remained identical. The PrVs studied showed considerable differences from the reference PrV (PrV-CD).
    Matched MeSH terms: Viral Plaque Assay
  12. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
    Matched MeSH terms: Viral Plaque Assay
  13. Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM
    J Virol Methods, 2003 Feb;107(2):163-7.
    PMID: 12505630
    Feline calicivirus (FCV) has been used by researchers as a surrogate for Norwalk virus (NV), since they share a similar genomic organization, physicochemical characteristics, and are grouped in the same family, Caliciviridae. Unlike NV, however, FCV can grow in established cell lines and produce a syncytial form of cytopathic effect. In this report, we describe the development and standardization of a plaque assay for FCV using monolayers of an established line of feline kidney (CrFK) cells in 12-well cell culture plates. The assay method has demonstrated reproducibility, ease of performance and resulted in clear plaque zones, readable in 24 h after virus inoculation. The infectivity titre of the virus by this plaque assay agreed well with tissue culture infectious dose(50) (TCID(50)) determinations. The described plaque assay would be a valuable tool in conducting various quantitative investigations using FCV as a model for NV and Norwalk-like viruses (NLV).
    Matched MeSH terms: Viral Plaque Assay*
  14. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J Virol Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
    Matched MeSH terms: Viral Plaque Assay*
  15. Tang KH, Yusoff K, Tan WS
    J Virol Methods, 2009 Aug;159(2):194-9.
    PMID: 19490973 DOI: 10.1016/j.jviromet.2009.03.015
    Hepatitis B is a major public health problem worldwide which may lead to chronic liver diseases, cirrhosis and hepatocellular carcinoma. An interaction between hepatitis B virus (HBV) envelope protein, particularly the PreS1 region, and a specific cell surface receptor is believed to be the initial step of HBV infection through attachment to hepatocytes. In order to develop a gene delivery system, bacteriophage T7 was modified genetically to display polypeptides of the PreS1 region. A recombinant T7 phage displaying amino acids 60-108 of the PreS1 region (PreS1(60-108)) was demonstrated to be most effective in transfecting HepG2 cells in a dose- and time-dependant manner. The phage genome was recovered from the cell lysate and confirmed by PCR whereas the infectious form of the internalized phage was measured by a plaque-forming assay. The internalized phage exhibited the appearance of green fluorescent dots when examined by immunofluorescence microscopy. Surface modification, particularly by displaying the PreS1(60-108) enhanced phage uptake, resulting in more efficient in vitro gene transfer. The ability of the recombinant phage to transfect HepG2 cells demonstrates the potential of the phage display system as a gene therapy for liver cancer.
    Matched MeSH terms: Viral Plaque Assay
  16. Ling TC, Loong CK, Tan WS, Tey BT, Abdullah WM, Ariff A
    J Microbiol, 2004 Sep;42(3):228-32.
    PMID: 15459653
    In this paper, we investigated the development of a simplified and rapid primary capture step for the recovery of M13 bacteriophage from particulate-containing feedstock. M13 bacteriophage, carrying an insert, was propagated and subsequently purified by the application of both conventional multiple steps and expanded bed anion exchange chromatography. In the conventional method, precipitation was conducted with PEG/NaCl, and centrifugation was also performed. In the single step expanded bed anion exchange adsorption, UpFront FastLine 20 (20 mm i.d.) from UpFront Chromatography was used as the contactor, while 54 ml (Ho = 15 cm) of STREAMLINE DEAE (rho = 1.2 g/cm3) from Amersham Pharmacia Biotechnology was used as the anion exchanger. The performance of the two methods were evaluated, analysed, and compared. It was demonstrated that the purification of the M13 bacteriophage, using expanded bed anion exchange adsorption, yielded the higher recovery percentage, at 82.86%. The conventional multiple step method yielded the lower recovery percentage, 36.07%. The generic application of this integrated technique has also been assessed.
    Matched MeSH terms: Viral Plaque Assay
  17. Monjezi R, Tey BT, Sieo CC, Tan WS
    PMID: 20538529 DOI: 10.1016/j.jchromb.2010.05.028
    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious.
    Matched MeSH terms: Viral Plaque Assay
  18. Chew MF, Tham HW, Rajik M, Sharifah SH
    J Appl Microbiol, 2015 Oct;119(4):1170-80.
    PMID: 26248692 DOI: 10.1111/jam.12921
    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action.
    Matched MeSH terms: Viral Plaque Assay
  19. Tan WC, Jaganath IB, Manikam R, Sekaran SD
    Int J Med Sci, 2013;10(13):1817-29.
    PMID: 24324358 DOI: 10.7150/ijms.6902
    Nucleoside analogues such as acyclovir are effective antiviral drugs against herpes simplex virus infections since its introduction. However, with the emergence of acyclovir-resistant HSV strains particularly in immunocompromised patients, there is a need to develop an alternative antiherpetic drug and plants could be the potential lead. In this study, the antiviral activity of the aqueous extract of four Phyllanthus species were evaluated against herpes simplex virus type-1 (HSV-1) and HSV-2 in Vero cells by quantitative PCR. The protein expressions of untreated and treated infected Vero cells were studied by 2D-gel electrophoresis and Western blot. This is the first study that reported the antiviral activity of P. watsonii. P. urinaria was shown to demonstrate the strongest antiviral activity against HSV-1 and HSV-2, with SI >33.6. Time-of-addition studies suggested that the extract may act against the early infection stage and the replication stage. Protein expression studies indicated that cellular proteins that are involved in maintaining cytoskeletal structure could be potential target for development of antiviral drugs. Preliminary findings indicated that P. urinaria demonstrated potent inhibitory activity against HSV. Hence, further studies such as in vivo evaluation are required for the development of effective antiherpetic drug.
    Matched MeSH terms: Viral Plaque Assay
  20. Yee SY, Fong NY, Fong GT, Tak OJ, Hui GT, Su Ming Y
    Int J Environ Health Res, 2006 Feb;16(1):59-68.
    PMID: 16507481
    Male-specific RNA coliphages (FRNA) have been recommended as indicators of fecal contamination and of the virological quality of water. In this study, 16 river water and 183 animal fecal samples were examined for the presence of FRNA coliphages by a plaque assay using Salmonella typhimurium WG49 and WG25 to differentiate between male-specific and somatic phages, a RNase spot test to differentiate between DNA and RNA phages and a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific identification of FRNA phages. The overall recovery rate for F-specific coliphages was 8.0%. (4.4% from animal fecal matter and 50% from river water samples). Plaque counts were generally low (< 6 x 10(2) pfu per g feces or ml water), with FRNA (6.5%) and Male-specific DNA coliphages (FDNA) (7.0%) phages occurring at almost equal frequencies. The RT-PCR was positive in all FRNA plaques and was able to identify FRNA phages in mixed populations of FRNA, FDNA and somatic phages.
    Matched MeSH terms: Viral Plaque Assay/methods
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links