OBJECTIVE: This study aimed to determine the binding of vitamin E isomers on transport proteins using in silico docking.
METHODS: Transport proteins were selected using AmiGo Gene Ontology tool based on the same molecular function annotation as αTTP. Protein structures were obtained from the Protein Data Bank. Ligands structures were obtained from ZINC database. In silico docking was performed using SwissDock.
RESULTS AND DISCUSSION: A total of 6 transport proteins were found: SEC14-like protein 2, glycolipid transfer protein (GLTP), pleckstrin homology domain-containing family A member 8, collagen type IV alpha-3-binding protein, ceramide-1-phosphate transfer protein and afamin. Compared with other transport proteins, αTTP had the highest affinities for all isomers except βT3. Binding order of vitamin E isomers toward αTTP was γT > βT > αT > δT > αT3 > γT3 > δT3 > βT3. GLTP had a higher affinity for tocotrienols than tocopherols. βT3 bound stronger to GLTP than αTTP.
CONCLUSION: αTTP remained as the most preferred transport protein for most of the isomers. The binding affinity of αT toward αTTP was not the highest than other isomers suggested that other intracellular trafficking mechanisms of these isomers may exist. GLTP may mediate the intracellular transport of tocotrienols, especially βT3. Improving the bioavailability of these isomers may enhance their beneficial effects to human.
PRACTICAL APPLICATION: The results of this study provide a better understanding on the stability of bioactive compounds and antioxidant activities in oil-in-water nanoemulsions that stabilized by similar ternary emulsifiers during storage at different temperatures. In addition, this study could be used as a predictive model to estimate the shelf life of bioactive compounds encapsulated in the form of nanoemulsions.
METHODS: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay.
RESULTS: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX.
CONCLUSION: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.
MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.
RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.
CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.