Displaying publications 1 - 20 of 204 in total

  1. Purba LDA, Zahra SA, Yuzir A, Iwamoto K, Abdullah N, Shimizu K, et al.
    J Environ Manage, 2023 May 01;333:117374.
    PMID: 36758398 DOI: 10.1016/j.jenvman.2023.117374
    Despite various research works on algal-bacterial aerobic granular sludge for wastewater treatment and resource recovery processes, limited information is available on its application in real wastewater treatment in terms of performance, microbial community variation and resource recovery. This study investigated the performance of algal-bacterial aerobic granular sludge on real low-strength wastewater treatment in addition to the characterization of microbial community and fatty acid compositions for biodiesel production. The results demonstrated 71% COD, 77% NH4+-N and 31% phosphate removal efficiencies, respectively. In addition, all the water parameters successfully met the effluent standard A, imposed by the Department of Environment (DOE) Malaysia. Core microbiome analyses revealed important microbial groups (i.e., Haliangium ochraceum, Burkholderiales and Chitinophagaceae) in bacterial community. Meanwhile the photosynthetic microorganisms, such as Oxyphotobacteria and Trebouxiophyceae dominated the algal-bacterial aerobic granular sludge, suggesting their important roles in granulation and wastewater treatment. Up to 12.51 mg/gSS lipid content was recovered from the granules. In addition, fatty acids composition showed high percetages of C16:0 and C18:0, demonstrating high feasibility to be used for biodiesel production application indicated by the cetane number, iodine value and oxidation stability properties.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  2. Som AM, Ramlee AA, Puasa SW, Hamid HAA
    Environ Sci Pollut Res Int, 2023 Feb;30(7):17108-17121.
    PMID: 34841489 DOI: 10.1007/s11356-021-17633-w
    In exploring the application of natural coagulants in industrial wastewater treatment, plant-based coagulants have been gaining more interests due to their potential such as biodegradability and easy availability. Hylocereus undatus foliage as a plant-based coagulant has been proven to be efficient during the coagulation-flocculation process; however, limited research has been reported focusing only on palm oil mill effluent (POME) and latex concentrate wastewater. In addition, no previous study has been carried out to determine the performance evaluation of Hylocereus undatus foliage in treating different types of wastewater incorporating different operating conditions using optimization techniques. Hence, this study employed response surface methodology (RSM) in an attempt to determine the performance evaluation of the coagulant in paint wastewater treatment. Four independent factors such as the pH value, coagulant dosage, rapid mixing speed and temperature were chosen as the operating conditions. Three water parameters such as turbidity, chemical oxygen demand (COD) and suspended solids (SS) were chosen as responses in this study. Results revealed that through central composite design (CCD) via Design Expert software, the optimum conditions were achieved at pH 5, coagulant dosage of 300 mg/L, rapid mixing speed of 120 rpm and temperature at 30 °C. The experimental data was observed to be close to the model predictions with the optimum turbidity, COD and SS removal efficiencies found to be at 62.81%, 59.57% and 57.23%, respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  3. Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD
    Sci Total Environ, 2023 Jan 15;856(Pt 2):159283.
    PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283
    Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  4. Sadiq AC, Olasupo A, Ngah WSW, Rahim NY, Suah FBM
    Int J Biol Macromol, 2021 Nov 30;191:1151-1163.
    PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179
    The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  5. Cheng SY, Show PL, Juan JC, Chang JS, Lau BF, Lai SH, et al.
    Chemosphere, 2021 Jan;262:127829.
    PMID: 32768754 DOI: 10.1016/j.chemosphere.2020.127829
    Recent trend to recover value-added products from wastewater calls for more effective pre-treatment technology. Conventional landfill leachate treatment is often complex and thus causes negative environmental impacts and financial burden. In order to facilitate downstream processing of leachate wastewater for production of energy or value-added products, it is pertinent to maximize leachate treatment performance by using simple yet effective technology that removes pollutants with minimum chemical added into the wastewater that could potentially affect downstream processing. Hence, the optimization of coagulation-flocculation leachate treatment using multivariate approach is crucial. Central composite design was applied to optimize operating parameters viz. Alum dosage, pH and mixing speed. Quadratic model indicated that the optimum COD removal of 54% is achieved with low alum dosage, pH and mixing speed of 750 mgL-1, 8.5 and 100 rpm, respectively. Optimization result showed that natural pH of the mature landfill leachate sample is optimum for alum coagulation process. Hence, the cost of pH adjustment could be reduced for industrial application by adopting optimized parameters. The inherent mechanism of pollutant removal was elucidated by FTIR peaks at 3853 cm-1 which indicated that hydrogen bonds play a major role in leachate removal by forming well aggregated flocs. This is concordance with SEM image that the floc was well aggregated with the porous linkages and amorphous surface structure. The optimization of leachate treatment has been achieved by minimizing the usage of alum under optimized condition.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  6. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  7. How SW, Nittami T, Ngoh GC, Curtis TP, Chua ASM
    Chemosphere, 2020 Nov;259:127444.
    PMID: 32640378 DOI: 10.1016/j.chemosphere.2020.127444
    In this study, we assessed and optimized a low-dissolved-oxygen oxic-anoxic (low-DO OA) process to achieve a low-cost and sustainable solution for wastewater treatment systems in the developing tropical countries treating low chemical oxygen demand-to-nitrogen ratio (COD/N) wastewater. The low-DO OA process attained complete ammonia removal and the effluent nitrate nitrogen (NO3-N) was below 0.3 mg/L. The recommended hydraulic retention time and sludge retention time (SRT) were 16 h and 20 days, respectively. The 16S rRNA sequencing data revealed that long SRT (20 days) encouraged the growth of nitrite-oxidizing bacteria (NOB) affiliated with "Candidatus Nitrospira defluvii". Comammox made up 10-20% of the Nitrospira community. NOB and comammox related to Nitrospira were enriched at long SRT (20 days) to achieve good low-DO nitrification performance. The low-DO OA process was efficient and has simpler design than conventional processes, which are keys for sustainable wastewater treatment systems in the developing countries treating low COD/N wastewater.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Ang ZY, Cheah KY, Abdullah NB, Samsuri SB, Lee SH, Yem AW, et al.
    J Oncol Pharm Pract, 2020 Sep;26(6):1306-1317.
    PMID: 31810422 DOI: 10.1177/1078155219891209
    PURPOSE: To identify the cost and reasons of returned parenteral chemotherapy regimens at a tertiary hospital in Kuala Lumpur, Malaysia.

    METHODS: Data were retrospectively extracted from all the Chemotherapy Return Forms in 2016, which is a compulsory documentation accompanying each return of parenteral chemotherapy regimen. The following data were extracted: patient's diagnosis, gender, location of treatment (i.e. ward/daycare clinic), start date of chemotherapy regimen, type of cytotoxic drug returned, dose of cytotoxic drug returned, number of cytotoxic drug preparations returned and reason for return as well as whether the returned cytotoxic drug preparations could be re-dispensed. The cost of wastage was calculated based on the cost per mg (or per unit) of the particular returned cytotoxic drug.

    RESULTS: One hundred and fifty-nine cases of returned chemotherapy regimen comprising of 231 parenteral cytotoxic drug preparations were analysed. The total cost of returned chemotherapy regimen for 2016 was €3632, with €756 (20.8%) worth of chemotherapy regimens returned due to preventable reasons and €2876 (79.2%) worth of chemotherapy regimens returned due to non-preventable reasons. Approximately 50% of cases returned chemotherapy regimen were due to deterioration of patient's clinical condition and another 24.5% of cases of returned chemotherapy regimen were attributed to adverse drug reactions.

    CONCLUSION: Wastage associated to non-preventable reasons such as adverse drug reactions and preventable causes like refusal of patients can be further reduced by using newer healthcare innovations and establishment of written institutional protocols or standard operating procedures as references for in-charge healthcare personnel when cytotoxic drug-related issues occur. Adoption of cost-saving strategies that have been proven by studies could further improve current cost containment strategies.

    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Masudi A, Harimisa GE, Ghafar NA, Jusoh NWC
    Environ Sci Pollut Res Int, 2020 Feb;27(5):4664-4682.
    PMID: 31873891 DOI: 10.1007/s11356-019-07415-w
    The increasing number and concentration of organic pollutants in water stream could become a serious threat in the near future. Magnetite has the potential to degrade pollutants via photocatalysis with a convenient separation process. This study discusses in detail the control size and morphology of magnetite nanoparticles, and their composites with co-precipitation, hydrothermal, sol-gel, and electrochemical route. Further photocatalytic enhancement with the addition of metal and porous support was proposed. This paper also discussed the technology to extend the lifetime of recombination through an in-depth explanation of charge transfer. The possibility to use waste materials as catalyst support was also elucidated. However, magnetite-based photocatalysts still require many improvements to meet commercialization criteria.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  11. Musa MA, Idrus S, Harun MR, Tuan Mohd Marzuki TF, Abdul Wahab AM
    PMID: 31906118 DOI: 10.3390/ijerph17010283
    Cattle slaughterhouses generate wastewater that is rich in organic contaminant and nutrients, which is considered as high strength wastewater with a high potential for energy recovery. Work was undertaken to evaluate the efficiency of the 12 L laboratory scale conventional and a modified upflow anaerobic sludge blanket (UASB) reactors (conventional, R1 and modified, R2), for treatment of cattle slaughterhouse wastewater (CSWW) under mesophilic condition (35 ± 1 °C). Both reactors were acclimated with synthetic wastewater for 30 days, then continuous study with real CSWW proceeds. The reactors were subjected to the same loading condition of OLR, starting from 1.75, 3, 5 10, 14, and 16 g L-1d-1, corresponding to 3.5, 6, 10, 20, 28, and 32 g COD/L at constant hydraulic retention time (HRT) of 24 h. The performance of the R1 reactor drastically dropped at OLR 10 g L-1d-1, and this significantly affected the subsequent stages. The steady-state performance of the R2 reactor under the same loading condition as the R1 reactor revealed a high COD removal efficiency of 94% and biogas and methane productions were 27 L/d and 89%. The SMP was 0.21 LCH4/gCOD added, whereas the NH3-N alkalinity ratio stood at 651 mg/L and 0.2. SEM showed that the R2 reactor was dominated by Methanosarcina bacterial species, while the R1 reactor revealed a disturb sludge with insufficient microbial biomass.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  12. Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR
    Environ Sci Pollut Res Int, 2019 Dec;26(34):35183-35197.
    PMID: 31691169 DOI: 10.1007/s11356-019-06524-w
    The pollution of water resources due to the disposal of industrial wastes that have organic material like phenol is causing worldwide concern because of their toxicity towards aquatic life, human beings and the environment. Phenol causes nervous system damage, renal kidney disease, mental retardation, cancer and anaemia. In this study, magnetic palm kernel biochar is used for removal of phenol from wastewater. The effect of parameters such as pH, agitation speed, contact time and magnetic biochar dosage are validated using design of experiments. The statistical analysis reveals that the optimum conditions for the highest removal (93.39%) of phenol are obtained at pH of 8, magnetic biochar dosage of 0.6 g, agitation speed at 180 rpm and time of 60 min with the initial concentration of 10 mg/L. The maximum adsorption capacities of phenol were found to be 10.84 mg/g and Langmuir and Freundlich isotherm models match the experimental data very well and adsorption kinetic obeys a pseudo-second order. Hence, magnetic palm kernel can be a potential candidate for phenol removal from wastewater.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. How SW, Chua ASM, Ngoh GC, Nittami T, Curtis TP
    Sci Total Environ, 2019 Nov 25;693:133526.
    PMID: 31376760 DOI: 10.1016/j.scitotenv.2019.07.332
    Many wastewater treatment plants (WWTPs) operating in biological nitrogen removal activated sludge process in the tropics are facing the pressure of increasingly stringent effluent standards while seeking solutions to reduce the plants' energy consumption and operating cost. This study investigated the feasibility of applying low-dissolved oxygen (low-DO) nitrification and utilizing slowly-biodegradable chemical oxygen demand (sbCOD) for denitrification, which helps to reduce energy usage and operating cost in treating low soluble COD-to-nitrogen tropical wastewater. The tropical wastewater was first characterized using wastewater fractionation and respirometry batch tests. Then, a lab-scale sequencing batch reactor (SBR) was operated to evaluate the long-term stability of low-DO nitrification and utilizing sbCOD for denitrification in an anoxic-oxic (AO) process treating tropical wastewater. The wastewater fractionation experiment revealed that particulate settleable solids (PSS) in the wastewater provided slowly-biodegradable COD (sbCOD), which made up the major part (51 ± 10%) of the total COD. The PSS hydrolysis rate constant at tropical temperature (30 °C) was 2.5 times higher than that at 20 °C, suggesting that sbCOD may be utilized for denitrification. During the SBR operation, high nitrification efficiency (93 ± 6%) was attained at low-DO condition (0.9 ± 0.1 mg O2/L). Utilizing sbCOD for post-anoxic denitrification in the SBR reduced the effluent nitrate concentration. Quantitative polymerase chain reaction, 16S rRNA amplicon sequencing and fluorescence in-situ hybridization revealed that the genus Nitrospira was a dominant nitrifier. 16S rRNA amplicon sequencing result suggested that 50% of the Nitrospira-related operational taxonomic units were affiliated with comammox, which may imply that the low-DO condition and the warm wastewater promoted their growth. The nitrogen removal in a tropical AO process was enhanced by incorporating low-DO nitrification and utilizing sbCOD for post-anoxic denitrification, which contributes to an improved energy sustainability of WWTPs.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Ong CB, Mohammad AW, Ng LY
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33856-33869.
    PMID: 29943245 DOI: 10.1007/s11356-018-2557-2
    In this work, synergistic effect of solar photocatalysis integrated with adsorption process towards the degradation of Congo red (CR) was investigated via two different approaches using a photocatalytic membrane reactor. In the first approach, sequential treatments were conducted through the adsorption by graphene oxide (GO) and then followed by photocatalytic oxidation using Fe-doped ZnO nanocomposites (NCs). In the second approach, however, CR solution was treated by photocatalytic oxidation using Fe-doped ZnO/rGO NCs. These nanocomposites were synthesized by a sol-gel method. The NCs were characterized by X-ray diffraction (XRD), photoluminescence (PL), Fourier transmission infrared (FTIR), ultraviolet-visible (UV-vis) spectroscopy, and field emission scanning electron microscopy (FESEM). It was observed that Fe-doped ZnO could enhance the photoactivity of ZnO under solar light. When Fe-doped ZnO were decorated on GO sheets, however, this provided a surface enhancement for adsorption of organic pollutants. The photocatalytic performances using both approaches were evaluated based on the degradation of CR molecules in aqueous solution under solar irradiation. Nanofiltration (NF) performance in terms of CR residual removal from water and their fouling behavior during post-separation of photocatalysts was studied. Serious flux declined and thicker fouling layer on membrane were found in photocatalytic membrane reactor using Fe-doped ZnO/rGO NCs which could be attributed to the stronger π-π interaction between rGO and CR solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Hamzah MH, Ahmad Asri MF, Che Man H, Mohammed A
    PMID: 31533308 DOI: 10.3390/ijerph16183453
    Common conventional biological treatment methods fail to decolorize palm oil mill effluent (POME). The present study focused on using the abundant palm oil mill boiler (POMB) ashes for POME decolorization. The POMB ashes were subjected to microwave irradiation and chemical treatment using H2SO4. The resultant adsorbents were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) analyses. The adsorption efficiency was evaluated at various pH levels (2-8.5), adsorption dosages (3-15 g) in 200 mL, and contact times (1-5 h). The microwave-irradiated POMB-retained ash recorded the highest color removal of 92.31%, for which the best conditions were pH 2, 15 g adsorbent dosage in 200 mL, and 5 h of contact time. At these best treatment conditions, the color concentration of the treated effluent was analyzed using the method proposed by the American Dye Manufacturers Institute (ADMI). The color concentration was 19.20 ADMI, which complies with the Malaysia discharge standard class A. The Freundlich isotherm model better fit the experimental data and had a high R2 of 0.9740. Based on these results, it can be deduced that microwave-irradiated POMB-retained ash has potential applications for POME decolorization via a biosorption process.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  16. Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA
    Water Sci Technol, 2019 Aug;80(3):458-465.
    PMID: 31596257 DOI: 10.2166/wst.2019.289
    In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21201-21215.
    PMID: 31115820 DOI: 10.1007/s11356-019-05204-z
    One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 μ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Ganapathy B, Yahya A, Ibrahim N
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11113-11125.
    PMID: 30788704 DOI: 10.1007/s11356-019-04334-8
    Despite being a key Malaysian economic contributor, the oil palm industry generates a large quantity of environmental pollutant known as palm oil mill effluent (POME). Therefore, the need to remediate POME has drawn a mounting interest among environmental scientists. This study has pioneered the application of Meyerozyma guilliermondii with accession number (MH 374161) that was isolated indigenously in accessing its potential to degrade POME. This strain was able to treat POME in shake flask experiments under aerobic condition by utilising POME as a sole source of carbon. However, it has also been shown that the addition of suitable carbon and nitrogen sources has significantly improved the degradation potential of M. guilliermondii. The remediation of POME using this strain resulted in a substantial reduction of chemical oxygen demand (COD) of 72%, total nitrogen of 49.2% removal, ammonical nitrogen of 45.1% removal, total organic carbon of 46.6% removal, phosphate of 60.6% removal, and 92.4% removal of oil and grease after 7 days of treatment period. The strain also exhibited an extracellular lipase activity which promotes better wastewater treatment. Additionally, Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses have specifically shown that M. guilliermondii strain can degrade hydrocarbons, fatty acids, and phenolic compounds present in the POME. Ultimately, this study has demonstrated that M. guilliermondii which was isolated indigenously exhibits an excellent degrading ability. Therefore, this strain is suitable to be employed in the remediation of POME, contributing to a safe discharge of the effluent into the environment.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Yaakob MA, Mohamed RMSR, Al-Gheethi A, Tiey A, Kassim AHM
    Environ Sci Pollut Res Int, 2019 Apr;26(12):12089-12108.
    PMID: 30827020 DOI: 10.1007/s11356-019-04633-0
    Production of Scenedesmus sp. biomass in chicken slaughterhouse wastewater (CSWW) is a promising alternative technique for commercial culture medium due to the high nutritional content of the generated biomass to be used as fish feeds. The current work deals with optimising of biomass production in CSWW using response surface methodology (RSM) as a function of two independent variables, namely temperature (10-30 °C) and photoperiod (6-24 h). The potential application of biomass yield as fish feeds was evaluated based on carbohydrate, protein and lipid contents. The results revealed that the best operating parameters for Scenedesmus sp. biomass production with high contents of carbohydrates, proteins and lipids were determined at 30 °C and after 24 h. The actual and predicted values were 2.47 vs. 3.09 g, 1.44 vs. 1.27 μg/mL, 29.9 vs. 31.60% and 25.75 vs. 28.44%, respectively. Moreover, the produced biomass has a high concentration of fatty acid methyl ester (FAME) as follows: 35.91% of C15:1; 17.58% of C24:1 and 14.11% of C18:1N9T. The biomass yields have 7.98% of eicosapentaenoic acid (EPA, C20:5N3) which is more appropriate as fish feeds. The Fourier transform infrared (FTIR) analysis of biomass revealed that the main functional groups included hydroxyl (OH), aldehyde (=C-H), alkanes and acyl chain groups. Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopic analysis (EDS) indicated that the surface morphology and element distribution in biomass produced in BBM and CSWW were varied. The findings have indicated that the biomass produced in CSWW has high potential as fish feeds.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links