Displaying publications 1 - 20 of 213 in total

Abstract:
Sort:
  1. Zainuddin Z, Wan Daud WR, Pauline O, Shafie A
    Bioresour Technol, 2011 Dec;102(23):10978-86.
    PMID: 21996481 DOI: 10.1016/j.biortech.2011.09.080
    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Suresh K, Smith HV, Tan TC
    Appl Environ Microbiol, 2005 Sep;71(9):5619-20.
    PMID: 16151162
    Blastocystis cysts were detected in 38% (47/123) (37 Scottish, 17 Malaysian) of sewage treatment works. Fifty percent of influents (29% Scottish, 76% Malaysian) and 28% of effluents (9% Scottish, 60% Malaysian) contained viable cysts. Viable cysts, discharged in effluent, provide further evidence for the potential for waterborne transmission of Blastocystis.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  3. Loh TC, Lee YC, Liang JB, Tan D
    Bioresour Technol, 2005 Jan;96(1):111-4.
    PMID: 15364088
    Vermicomposting is commonly adopted for the treatment of livestock organic wastes. In the present study, two types of livestock manure were used for culturing of the earthworm, Eisenia foetida. Each treatment group consisted of six replicates and worm vermicasts were examined after 5 weeks. The concentrations of total C, P and K in goat manure vermicasts were higher than those in cattle manure vermicasts. Cattle vermicasts had a higher N content than goat vermicasts but the C:N ratio of fresh manure was higher than that of vermicasts for both materials. Earthworm biomass and reproductive performance, in terms of number of worms after 5 weeks of experiment, were higher in cattle manure than in goat manure. The cocoon production per worm in cattle manure was higher than in goat manure. However, the hatchability of cocoons was not affected by manure treatments. In conclusion, cattle manure provided a more nutritious and friendly environment to the earthworms than goat manure.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  4. Mannan S, Fakhru'l-Razi A, Alam MZ
    Water Res, 2005 Aug;39(13):2935-43.
    PMID: 16000208
    The present study was designed to evaluate the potential of microbial adaptation and its affinity to biodegradation as well as bioconversion of soluble/insoluble (organic) substances of domestic wastewater treatment plant (DWTP) sludge (activated domestic sludge) under natural/non-sterilized conditions. The two filamentous fungi, Penicillium corylophilum (WWZP1003) and Aspergillus niger (SCahmA103) were used to achieve the objectives. It was observed that P. corylophilum (WWZP1003) was the better strain compared to A. niger (SCahmA103) for the bioconversion of domestic activated sludge through adaptation. The visual observation in plate culture showed that about 95-98% of cultured microbes (P. corylophilum and A. niger) dominated in treated sludge after 2 days of treatment. In this study, it was also found that the P. corylophilum was capable of removing 94.40% of COD and 98.95% of turbidity of filtrate with minimum dose of inoculum of 10% v/v in DWTP sludge (1% w/w). The pH level was lower (acidic condition) in the fungal treatment and maximum reduction of COD and turbidity was observed (at lower pH). The results for specific resistance to filtration (SRF) showed that the fungi played a great role in enhancing the dewaterability and filterability. In particular, the strain Penicillium had a more significant capability (than A. niger) of reducing 93.20% of SRF compared to the uninoculated sample. Effective results were observed by using fungal inoculum after 2 days of treatment. The developed LSB process is a new biotechnological approach for sludge management strategy.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Sadef Y, Poulsen TG, Habib K, Iqbal T, Nizami AS
    Waste Manag, 2016 Oct;56:396-402.
    PMID: 27342191 DOI: 10.1016/j.wasman.2016.06.018
    Composting can potentially remove organic pollutants in sewage sludge. When estimating pollutant removal efficiency, knowledge of estimate uncertainty is important for understanding estimate reliability. In this study the uncertainty (coefficient of variation, CV) in pollutant degradation rate (K1) and relative concentration at 35days of composting (C35/C0) was evaluated. This was done based on recently presented pollutant concentration data, measured under full-scale composting conditions using two different sampling methods for a range of organic pollutants commonly found in sewage sludge. Non-parametric statistical procedures were used to estimate CV values for K1 and C35/C0 for individual pollutants. These were then used to compare the two sampling methods with respect to CV and to determine confidence intervals for average CV. Results showed that sampling method is crucial for reducing uncertainty. The results further indicated that it is possible to achieve CV values for both K1 and C35/C0 of about 15%.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  6. Zahrim AY, Hilal N, Tizaoui C
    Water Sci Technol, 2013;67(4):901-6.
    PMID: 23306271 DOI: 10.2166/wst.2012.638
    Tubular nanofiltration membrane performance to treat water for reuse was carried out by choosing C.I. Acid Black 210 dye as a model dye. It has been shown that increasing pH causes reduction in irreversible fouling factor (IFF) and the dye removal is also affected by solution pH. The total organic carbon removal for pH 4, pH 7, pH 8 and pH 10 is 97.9, 92.3, 94.5 and 94.6%, respectively. The conductivity removal for pH 4, pH 7, pH 8 and pH 10 is 85.1, 88.3, 87.8 and 90.7% respectively. The increase in the initial dye concentration causes rapid increase in fouling until 100 mg/l. Then the fouling increases gradually as it reaches a maximum IFF around 13%. This study also shows that the colour of permeate changes from colourless to light greenish/yellowish (initial concentration of 2,000 and 4,000 mg/l) as the initial dye concentration increases. The conductivity removal was also reduced as the initial dye concentration increased due to screening of the Donnan effect with the presence of salt.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  7. Umar M, Aziz HA, Yusoff MS
    Waste Manag, 2010 Nov;30(11):2113-21.
    PMID: 20675113 DOI: 10.1016/j.wasman.2010.07.003
    Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  8. Alam MZ, Fakhru'l-Razi A, Molla AH, Roychoudhury PK
    PMID: 11545349
    This study was conducted to evaluate the effect of an eminent decay fungus, Phanerocheate chrysosporium of organic residues on wastewater sludge for its improvement through decomposition and separation of waste particles by Liquid State Bioconversion (LSB). The effect of fungal treatment was compared to uninoculated (Control) at three different harvests 7, 14 and 21 days after inoculation (DAI). The observed results showed that the weight loss and solid content of wastewater sludge were significantly influenced by Phanerocheate chrysosporium. Both parameters were highly influenced at 7 DAI. The COD and pH of wastewater sludge were also highly influenced by fungal treatment.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Lee KM, Lim PE
    Water Sci Technol, 2003;47(10):41-7.
    PMID: 12862215
    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Loo YM, Lim PE, Seng CE
    Environ Technol, 2010 Apr 14;31(5):479-87.
    PMID: 20480823 DOI: 10.1080/09593330903514482
    The objective of this research was to evaluate the treatment ofp-nitrophenol (PNP) as a sole organic carbon source using a sequencing batch reactor (SBR) with the addition of adsorbent. Two types of adsorbents, namely powdered activated carbon (PAC) and pyrolysed rice husk (PRH) were used in this study. Two identical SBRs, each with a working volume of 10 L, were operated with fill, react, settle, draw and idle periods in the ratio of 2:8:1:0.75:0.25 for a cycle time of 12 h. The results showed that, without the addition of adsorbent, increasing the influent PNP concentration to 200 mg/L resulted in the deterioration of chemical oxygen demand (COD) removal efficiency and PNP removal efficiency in the SBRs. Improvement in the performance of the SBR was observed with the addition of PAC. When the dosage of 1.0 g PAC/cycle was applied, COD removal of 95% and almost complete removal of PNP were achieved at the influent PNP concentration of 300 mg/L. The kinetic study showed that the rates of COD and PNP removal can be described by the first-order kinetics. The enhancement of performance in the PAC-supplemented SBR was postulated to be due to the initial adsorption of PNP by the freshly added and the bioregenerated PAC, thus reducing the inhibition on the microorganisms. The PRH was found to be ineffective because of its relatively low adsorption capacity for PNP, compared with that of PAC.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  11. Syafalni, Lim HK, Ismail N, Abustan I, Murshed MF, Ahmad A
    J Environ Manage, 2012 Dec 15;112:353-9.
    PMID: 22964042 DOI: 10.1016/j.jenvman.2012.08.001
    In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  12. Lim JX, Vadivelu VM
    J Environ Manage, 2014 Dec 15;146:217-225.
    PMID: 25173730 DOI: 10.1016/j.jenvman.2014.07.023
    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  13. Alkarkhi AF, Lim HK, Yusup Y, Teng TT, Abu Bakar MA, Cheah KS
    J Environ Manage, 2013 Jun 15;122:121-9.
    PMID: 23570974 DOI: 10.1016/j.jenvman.2013.03.010
    The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Mohammed RR, Chong MF
    J Environ Manage, 2014 Jan;132:237-49.
    PMID: 24321284 DOI: 10.1016/j.jenvman.2013.11.031
    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Lim SL, Wu TY, Clarke C
    J Agric Food Chem, 2014 Jan 22;62(3):691-8.
    PMID: 24372356 DOI: 10.1021/jf404265f
    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  16. Alam MZ, Fakhru'l-Razi A, Molla AH
    PMID: 15332668
    A laboratory-scale study was undertaken to evaluate the liquid state bioconversion (LSB) in terms of biodegradation of microbially treated domestic wastewater sludge (biosolids) as well as its kinetics. The potential fungal strains and process factors developed from previous studies were used throughout the study. The results presented in this study showed that an effective biodegradation occurred with the biosolids (sludge cake) accumulated. The maximum biosolids (sludge cake) accumulated (93.8 g/kg of liquid sludge) enriched with the biomass protein (30.2 g/kg of dry biosolids), was achieved which improved the effluent quality by enhancing the removal of chemical oxygen demand (COD), reducing sugar (RS), soluble protein (SP), total dissolved solids (TDS), and total suspended solids (TSS). The higher reduction of specific resistance to filtration (SRF) was observed during bioconversion process. The kinetics results showed that the experimental data were better fitted for the biodegradation efficiency, and biosolids accumulation and biodegradation rate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Abdullah EA, Abdullah AH, Zainal Z, Hussein MZ, Ban TK
    J Environ Sci (China), 2012;24(10):1876-84.
    PMID: 23520859
    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents. The synthesized product was characterized by different analytical techniques. The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants. Different kinetic, isotherm and diffusion models were chosen to describe the adsorption process. X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however, the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes. Dyes removal was found to be a function of adsorbent dosage, initial dye concentration, solution pH and temperature. The reduction of Langmuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent. Mass transfer can be described by intra-particle diffusion at a certain stage, but it was not the rate limiting step that controlled the adsorption process. Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  18. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al.
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1464-84.
    PMID: 22207239 DOI: 10.1007/s11356-011-0709-8
    BACKGROUND: In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

    REVIEW: This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

    CONCLUSION: Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Waste Disposal, Fluid/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links