Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Usman A, Shaikh MF, Dujaili JA, Mustafa N, Gan SH
    Diabetes Metab Syndr, 2021 Mar 05;15(2):573-580.
    PMID: 33706189 DOI: 10.1016/j.dsx.2021.03.001
    BACKGROUND AND AIMS: Diabetic ketoacidosis (DKA) treatment guidelines recommend to initiate potassium-replacement when serum potassium (SK) drops within normal range, and to withhold insulin if SK is below normal. Despite strict recommendations, hypokalemia is frequently observed in DKA.

    METHODS: Scientific literature was thoroughly searched to find 1) DKA treatment guidelines, 2) studies reporting hypokalemia in DKA, 3) and literature elaborating mechanisms involved in hypokalemia.

    RESULTS: Acidosis affects SK and its regulators including insulin, catecholamines and aldosterone. Current conceptual framework is an argument to gauge the degree of hypokalemia before it strikes DKA patients utilizing SK level after adjusting it with pH. Suggested approach will reduce hypokalemia risk and its associated complications. The nomogram calculates pH-adjusted potassium and expected potassium loss. It also ranks hypokalemia associated risk, and proposes the potassium-replacement rate over given time period. The differences between current DKA treatment guidelines and proposed strategy are also discussed. Moreover, reasons and risk of hyperkalemia due to early initiation of potassium replacement and remedial actions are debated.

    CONCLUSION: In light of proposed strategy, utilizing the nomogram ensures reduced incidence of hypokalemia in DKA resulting in improved clinical and patient outcomes. Pharmacoeconomic benefits can also be expected when avoiding hypokalemia ensures early discharge.

    Matched MeSH terms: Aldosterone
  2. Cheung TT, Ismail NAS, Moir R, Arora N, McDonald FJ, Condliffe SB
    Front Physiol, 2019;10:7.
    PMID: 30800070 DOI: 10.3389/fphys.2019.00007
    The epithelial Na+ channel (ENaC) provides for Na+ absorption in various types of epithelia including the kidney, lung, and colon where ENaC is localized to the apical membrane to enable Na+ entry into the cell. The degree of Na+ entry via ENaC largely depends on the number of active channels localized to the cell membrane, and is tightly controlled by interactions with ubiquitin ligases, kinases, and G-proteins. While regulation of ENaC endocytosis has been well-studied, relatively little is understood of the proteins that govern ENaC exocytosis. We hypothesized that the annexin II light chain, p11, could participate in the transport of ENaC along the exocytic pathway. Our results demonstrate that all three ENaC channel subunits interacted with p11 in an in vitro binding assay. Furthermore, p11 was able to immunoprecipitate ENaC in epithelial cells. Quantitative mass spectrometry of affinity-purified ENaC-p11 complexes recovered several other trafficking proteins including HSP-90 and annexin A6. We also report that p11 exhibits a robust protein expression in cortical collecting duct epithelial cells. However, the expression of p11 in these cells was not influenced by either short-term or long-term exposure to aldosterone. To determine whether the p11 interaction affected ENaC function, we measured amiloride sensitive Na+ currents in Xenopus oocytes or mammalian epithelia co-expressing ENaC and p11 or a siRNA to p11. Results from these experiments showed that p11 significantly augmented ENaC current, whereas knockdown of p11 decreased current. Further, knockdown of p11 reduced ENaC cell surface population suggesting p11 promotes membrane insertion of ENaC. Overall, our findings reveal a novel protein interaction that controls the number of ENaC channels inserted at the membrane via the exocytic pathway.
    Matched MeSH terms: Aldosterone
  3. Abu Bakar K, Jalaludin MY, Zainal N, Woon SL, Mohd Zikre N, Samingan N, et al.
    Front Pediatr, 2021;9:655010.
    PMID: 34026690 DOI: 10.3389/fped.2021.655010
    Introduction: Many reports on investigations and treatments in UTI, however little, have been mentioned with regard to electrolyte abnormalities. Secondary pseudohypoaldosteronism (PHA) in UTI, though less common, is a known association. Features include hyponatremia and concomitant hyperkalemia. Objectives: We aim to highlight these uncommon sequelae in UTI to avoid incorrect diagnosis and unnecessary investigations. Study Design: Clinical data of patients admitted and referred to a pediatric nephrologist at the University Malaya Medical Center between May 2019 and October 2020 were collated and elaborated. Results and Discussion: We report three infants with hyponatremia and hyperkalemia during UTI episodes. Two infants were known to have posterior urethral valve (PUV) before the onset of UTI and one infant had UTI, which led to investigations confirming the diagnosis of bladder vaginal fistula. The electrolyte derangements were temporary and resolved within 48 to 72 h of treatment with intravenous fluid and appropriate antibiotic therapy. Out of three, only one had a hormonal study, which confirms PHA. Reduced aldosterone activity could be due to absolute reduction in aldosterone titer or lack of aldosterone responsiveness at tubular (other tissues) level. In the latter, aldosterone titer is elevated. The infant in our cohort who had hormonal evaluation had the mentioned electrolyte abnormalities with a markedly elevated aldosterone titer. This demonstrated defective action of the hormone at the level of mineralocorticoid receptor. Although the remaining two infants had no confirmatory hormonal study, all of them recovered within 48 h of hospital admission, after receiving appropriate management for the primary problem, which was UTI. We observed a slower recovery of hyponatremia in relation to hyperkalemia, but none of these infants required salt replacement upon discharge. Conclusion: Infants with severe UTI and deranged electrolytes should be screened for structural abnormality and vice versa. Not all infants require hormonal screening, but those who required prolonged salt replacement or showed involvement of other systems warrant further evaluation.
    Matched MeSH terms: Aldosterone
  4. Mohideen SK, Mustangin M, Kamaruddin NA, Muhammad R, Jamal ARA, Sukor N, et al.
    PMID: 31636604 DOI: 10.3389/fendo.2019.00666
    Studies on excised adrenals from primary aldosteronism patients have found that somatic mutations in KCNJ5 frequently cause excess aldosterone production in the culprit aldosterone-producing adenoma (APA). KCNJ5 mutant APAs were reported to be peculiarly overrepresented among young females and in Oriental cohorts, compared to their older male, or Caucasian counterparts. These larger APAs were also reported to have similarities with the zona fasciculata (ZF) in the adrenal both from the steroid production profile and the morphology of the cell. We therefore aimed to corroborate these findings by characterizing the APAs from a multi-ethnic Malaysian cohort. The prevalence of KCNJ5 mutations was estimated through targeted DNA sequencing of KCNJ5 in 54 APAs. Confirmation of APA sample acquisition was performed by CYP11B2 immunohistochemistry (IHC) staining. The ZF steroid production profile was based on the ZF enzyme CYP17A1 IHC staining, and ZF cell morphology was based on a high cytoplasm to nucleus ratio. Seventeen (31.5%) APAs studied, harbored a KCNJ5 mutation. No female over-representation was seen in this cohort though females were found to have a higher expression of CYP11B2 than males (p = 0.009; Mann-Whitney U test). Age at adrenalectomy correlated negatively with the percentage of ZF-like cells in the APA (p = 0.01; Spearman's rho) but not with the KCNJ5 genotype. KCNJ5 mutant APAs had a high percentage of ZF-like cells (and high CYP17A1 expression) but so did the wild-type APAs. In summary, prevalence of KCNJ5 mutant APAs in this cohort was similar to other Caucasian cohorts, however, over-representation of females did not occur, which is similar to some studies in Oriental cohorts.
    Matched MeSH terms: Aldosterone
  5. Huang Y, Ting PY, Yao TM, Homma T, Brooks D, Katayama Rangel IA, et al.
    J Endocrinol, 2018 Nov 01.
    PMID: 30400034 DOI: 10.1530/JOE-18-0247
    Human risk allele carriers of Lysine-Specific Demethylase 1 (LSD1) and LSD1 deficient mice have salt sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone's response to salt intake resulting in increased cardiovascular risk factors [blood pressure and microalbumin]. Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote knockout (LSD1+/-) and wild type (WT) mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/- mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/- mice. These data suggest that LSD1 interacts with aldosterone's secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.
    Matched MeSH terms: Aldosterone
  6. Li H, Xu TY, Li Y, Chia YC, Buranakitjaroen P, Cheng HM, et al.
    J Clin Hypertens (Greenwich), 2022 Sep;24(9):1180-1186.
    PMID: 36196467 DOI: 10.1111/jch.14556
    There is emerging evidence that α1-blockers can be safely used in the treatment of hypertension. These drugs can be used in almost all hypertensive patients for blood pressure control. However, there are several special indications. Benign prostatic hyperplasia is a compelling indication of α1-blockers, because of the dual treatment effect on both high blood pressure and lower urinary tract symptoms. Many patients with resistant hypertension would require α1-blockers as add-on therapy. Primary aldosteronism screen is a rapidly increasing clinical demand in the management of hypertension, where α1-blockers are useful for blood pressure control in the preparation for the measurement of plasma aldosterone and renin. Nonetheless, α1-blockers have to be used under several considerations. Among the currently available agents, only long-acting α1-blockers, such as doxazosin gastrointestinal therapeutic system 4-8 mg daily and terazosin 2-4 mg daily, should be chosen. Orthostatic hypotension is a concern with the use of α1-blockers especially in the elderly, and requires careful initial bedtime dosing and avoiding overdosing. Fluid retention is potentially also a concern, which may be overcome by combining an α1-blocker with a diuretic.
    Matched MeSH terms: Aldosterone
  7. Teo AE, Garg S, Shaikh LH, Zhou J, Karet Frankl FE, Gurnell M, et al.
    N Engl J Med, 2015 Oct 08;373(15):1429-36.
    PMID: 26397949 DOI: 10.1056/NEJMoa1504869
    Recent discoveries of somatic mutations permit the recognition of subtypes of aldosterone-producing adenomas with distinct clinical presentations and pathological features. Here we describe three women with hyperaldosteronism, two who presented in pregnancy and one who presented after menopause. Their aldosterone-producing adenomas harbored activating mutations of CTNNB1, encoding β-catenin in the Wnt cell-differentiation pathway, and expressed LHCGR and GNRHR, encoding gonadal receptors, at levels that were more than 100 times as high as the levels in other aldosterone-producing adenomas. The mutations stimulate Wnt activation and cause adrenocortical cells to de-differentiate toward their common adrenal-gonadal precursor cell type. (Funded by grants from the National Institute for Health Research Cambridge Biomedical Research Centre and others.).
    Matched MeSH terms: Aldosterone/secretion
  8. Zhou J, Shaikh LH, Neogi SG, McFarlane I, Zhao W, Figg N, et al.
    Hypertension, 2015 May;65(5):1103-10.
    PMID: 25776071 DOI: 10.1161/HYP.0000000000000025
    Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-β, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-β and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-β signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.
    Matched MeSH terms: Aldosterone/secretion*
  9. Loh KC, Koay ES, Khaw MC, Emmanuel SC, Young WF
    J Clin Endocrinol Metab, 2000 Aug;85(8):2854-9.
    PMID: 10946893
    Recent studies using the ratio of plasma aldosterone concentration (PAC) to PRA as the screening test for primary aldosteronism in hypertensive populations suggested that the prevalence may be as high as 5-15%, with well over half of the subjects having normal serum potassium concentrations. Despite an increasing clinical awareness of this entity, many clinicians are reluctant to consider routine screening for primary aldosteronism in essential hypertensive patients because there are few community-based prevalence studies of primary aldosteronism in different populations. Furthermore, genetic and environmental differences may affect the prevalence and presentation of primary aldosteronism in distinct populations. This study was designed to determine the prevalence of primary aldosteronism in the predominantly Chinese population in Singapore. Three hundred and fifty unselected adult hypertensive patients attending two primary care clinics had random ambulatory measurements for PAC (nanograms per dL) and PRA (nanograms per mL/h). Serum urea, creatinine, and electrolyte measurements were obtained simultaneously. Subjects with renal insufficiency (serum creatinine, >140 micromol/L) and those treated with glucocorticoids or spironolactone were excluded. Screening was considered positive if the PAC: PRA ratio was more than 20 and the PAC was more than 15 ng/dL (>416 pmol/L). Primary aldosteronism was confirmed with the determination of PAC after 2 L saline administered iv over 4 h. Adrenal computed tomographic (CT) scans were performed in biochemically confirmed cases of primary aldosteronism. Further localization with adrenal vein sampling was carried out in selected patients with equivocal findings on adrenal CT scan. Sixty-three (18%) of the 350 hypertensive patients (215 women and 135 men; age range, 23-75 yr) were screened positive for primary aldosteronism. Only 13 of these 63 subjects (21%) were hypokalemic (serum potassium, <3.5 mmol/L). Confirmatory studies were carried out in 56 (89%) of the subjects with a positive PAC:PRA ratio. Using a PAC above 10 ng/dL (>277 pmol/L) after saline infusion as the diagnostic cut-off, 16 of the 56 patients had biochemically confirmed primary aldosteronism. Hypokalemia was found in 6 of the 16 patients (37.5%) with primary aldosteronism. Subtype evaluation with adrenal CT scan and adrenal vein sampling indicated that half of the patients with primary aldosteronism may have had potentially curable unilateral adrenal adenoma. Our data suggest that primary aldosteronism occurs in at least 5% of the adult Asian hypertensive population, and approximately half of these individuals may have potentially curable, unilateral, aldosterone-producing adrenal adenoma. Our findings also confirm the poor predictive value of hypokalemia in both the diagnosis and the exclusion of primary aldosteronism.
    Matched MeSH terms: Aldosterone/blood
  10. Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, et al.
    Hypertension, 2020 04;75(4):1045-1053.
    PMID: 32160100 DOI: 10.1161/HYPERTENSIONAHA.119.13821
    LSD1 (lysine-specific demethylase-1) is an epigenetic regulator of gene transcription. LSD1 risk allele in humans and LSD1 deficiency (LSD1+/-) in mice confer increasing salt-sensitivity of blood pressure with age, which evolves into salt-sensitive hypertension in older individuals. However, the mechanism underlying the relationship between LSD1 and salt-sensitivity of blood pressure remains elusive. Here, we show that LSD1 genotype (in humans) and LSD1 deficiency (in mice) lead to similar associations with increased blood pressure and urine potassium levels but with decreased aldosterone levels during a liberal salt diet. Thus, we hypothesized that LSD1 deficiency leads to an MR (mineralocorticoid receptor)-dependent hypertensive state. Yet, further studies in LSD1+/- mice treated with the MR antagonist eplerenone demonstrate that hypertension, kaliuria, and albuminuria are substantially improved, suggesting that the ligand-independent activation of the MR is the underlying cause of this LSD1 deficiency-mediated phenotype. Indeed, while MR and epithelial sodium channel expression levels were increased in LSD1+/- mouse kidney tissues, aldosterone secretion from LSD1+/- glomerulosa cells was significantly lower. Collectively, these data establish that LSD1 deficiency leads to an inappropriate activation and increased levels of the MR during a liberal salt regimen and suggest that inhibiting the MR pathway is a useful strategy for treatment of hypertension in human LSD1 risk allele carriers.
    Matched MeSH terms: Aldosterone/blood
  11. Zhou J, Lam B, Neogi SG, Yeo GS, Azizan EA, Brown MJ
    Hypertension, 2016 12;68(6):1424-1431.
    PMID: 27777363
    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
    Matched MeSH terms: Aldosterone/metabolism*
  12. Tan JW, Gupta T, Manosroi W, Yao TM, Hopkins PN, Williams JS, et al.
    JCI Insight, 2017 12 07;2(23).
    PMID: 29212952 DOI: 10.1172/jci.insight.95992
    Compared with persons of European descent (ED), persons of African descent (AD) have lower aldosterone (ALDO) levels, with the assumption being that the increased cardiovascular disease (CVD) risk associated with AD is not related to ALDO. However, the appropriateness of the ALDO levels for the volume status in AD is unclear. We hypothesized that, even though ALDO levels are lower in AD, they are inappropriately increased, and therefore, ALDO could mediate the increased CVD in AD. To test this hypothesis, we analyzed data from HyperPATH - 1,788 individuals from the total cohort and 765 restricted to ED-to-AD in a 2:1 match and genotyped for the endothelin-1 gene (EDN1). Linear regression analyses with adjustments were performed. In the total and restricted cohorts, PRA, ALDO, and urinary potassium levels were significantly lower in AD. However, in the AD group, greater ALDO dysregulation was present as evidenced by higher ALDO/plasma renin activity (PRA) ratios (ARR) and sodium-modulated ALDO suppression-to-stimulation indices. Furthermore, EDN1 minor allele carriers had significantly greater ARRs than noncarriers but only in the AD group. ARR levels were modulated by a significant interaction between EDN1 and AD. Thus, EDN1 variants may identify particularly susceptible ADs who will be responsive to treatment targeting ALDO-dependent pathways (e.g., mineralocorticoid-receptor antagonists).
    Matched MeSH terms: Aldosterone/metabolism*
  13. Shaikh LH, Zhou J, Teo AE, Garg S, Neogi SG, Figg N, et al.
    J Clin Endocrinol Metab, 2015 Jun;100(6):E836-44.
    PMID: 25915569 DOI: 10.1210/jc.2015-1734
    CONTEXT: Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production.

    OBJECTIVE: The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover.

    DESIGN: This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7).

    INTERVENTIONS: Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3).

    MAIN OUTCOME MEASURES: A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured.

    RESULTS: LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers.

    CONCLUSION: LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.

    Matched MeSH terms: Aldosterone/biosynthesis*
  14. Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, et al.
    Nat Genet, 2021 Sep;53(9):1360-1372.
    PMID: 34385710 DOI: 10.1038/s41588-021-00906-y
    Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
    Matched MeSH terms: Aldosterone/biosynthesis*
  15. Sakthiswary R, Wong M, Isa ZM, Nor Azmi K
    Clin Ter, 2012;163(3):195-8.
    PMID: 22964690
    Treatment with angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) may suppress aldosterone production only in the initial phase of treatment and subsequently lead to a rising level of aldosterone to baseline or higher. This phenomenon is described as aldosterone breakthrough. Apart from serial plasma aldosterone levels, there are no other test to identify this condition. The purpose of this study was to evaluate the role of spot urine potassium as a potential screening test for aldosterone breakthrough.
    Matched MeSH terms: Aldosterone/metabolism*
  16. Asmah BJ, Wan Nazaimoon WM, Norazmi K, Tan TT, Khalid BA
    Horm. Metab. Res., 1997 Nov;29(11):580-3.
    PMID: 9479560 DOI: 10.1055/s-2007-979105
    The effect of thyroid hormones on the renin-angiotensin-aldosterone system has not been fully resolved. Highly specific immunoassays for measurement of renin, aldosterone, free T4 (fT4), free T3 (fT3) and ultrasensitive TSH enables a direct and more accurate measurement of these hormones. We investigated the relationship between plasma renin, aldosterone and thyroid hormones in the basal state and after intravenous frusemide. This is a cross-sectional study involving 37 patients with thyrotoxicosis, 42 rendered euthyroid with normal fT4, fT3 and TSH levels, 17 with euthyroid levels of fT4 and fT3 but suppressed TSH, and 11 with hypothyroidism. Basal plasma renin was significantly higher in thyrotoxicosis (63.4 +/- 9.8 microU/ml, mean +/- SEM) compared to euthyroid (32.7 +/- 4.4 microU/ml) and hypothyroid (26.7 +/- 9.8 microU/ml). Basal plasma renin for euthyroid with suppressed TSH (41.0 +/- 7.4 microU/ml) was significantly higher than hypothyroid (p = 0.02). Basal plasma aldosterones were not significantly different except for suppressed TSH (157.7 +/- 13 pg/ml), which was higher than normal (109.9 +/- 10.4 pg/ml; p = 0.04). Following frusemide, plasma renin and aldosterone were significantly increased in all groups. Plasma renin was highly correlated to fT3 (r = 0.405, p < 0.001), total T3 (r = 0.359, p < 0.001), fT4 (r = 0.331, p < 0.001) and TSH (r = 0.300, p < 0.001) in the basal state, but less to total T4 (r = 0.248, p < 0.01). Plasma renin correlated poorly to serum aldosterone (r = 0.212, p < 0.03). This study clearly showed that regulation of renin was mainly influenced by fT3, and that aldosterone response to frusemide was blunted in thyrotoxicosis despite normal electrolytes.
    Matched MeSH terms: Aldosterone/blood*
  17. Gupta G, Dahiya R, Singh Y, Mishra A, Verma A, Gothwal SK, et al.
    Chem Biol Interact, 2020 Feb 01;317:108975.
    PMID: 32032593 DOI: 10.1016/j.cbi.2020.108975
    In patients with acute kidney injury progressively converting into chronic kidney disease (CKD), proteinuria and high blood pressure predict progression to end-stage renal disease (ESRD). Although, Renin-angiotensin-aldosterone system (RAAS) regulates blood pressure and kidney disease through both direct and indirect mechanisms. RAAS blockers that act at the level of angiotensin or lower in the cascade can cause compensatory increases in the plasma renin and angiotensin II level. Here, in this review article, we are exploring the evidence-based on RAAS blockade action releases of aldosterone and hypothesizing the molecular mechanism for converting the acute kidney injury into chronic kidney disease to end-stage renal disease.
    Matched MeSH terms: Aldosterone/metabolism*
  18. Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, et al.
    Hypertension, 2017 07;70(1):129-136.
    PMID: 28584016 DOI: 10.1161/HYPERTENSIONAHA.117.09057
    Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.
    Matched MeSH terms: Aldosterone/metabolism*
  19. Gholami SK, Tay CS, Lee JM, Zagoren E, Maris SA, Wong JY, et al.
    J Endocrinol, 2021 11 24;252(1):1-13.
    PMID: 34643545 DOI: 10.1530/JOE-21-0126
    Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues' levels. This study's goal was to determine whether ALDO's biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO's biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG's MR (thereby activating the ultrashort feedback loop) reduced CYP11B2's activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO's biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO's circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.
    Matched MeSH terms: Aldosterone/metabolism*
  20. Haas AV, En Yee L, Yuan YE, Wong YH, Hopkins PN, Jeunemaitre X, et al.
    Hypertension, 2021 Dec;78(6):1809-1817.
    PMID: 34757767 DOI: 10.1161/HYPERTENSIONAHA.121.18033
    [Figure: see text].
    Matched MeSH terms: Aldosterone/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links