Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Ahmad N, Hashim R, Shukor S, Mohd Khalid KN, Shamsudin F, Hussin H
    J Med Microbiol, 2013 May;62(Pt 5):804-806.
    PMID: 23449878 DOI: 10.1099/jmm.0.050781-0
    Matched MeSH terms: beta-Lactamases/genetics
  2. Aklilu E, Harun A, Singh KKB, Ibrahim S, Kamaruzzaman NF
    Biomed Res Int, 2021;2021:5596502.
    PMID: 34660793 DOI: 10.1155/2021/5596502
    Carbapenem-resistant Enterobacteriaceae (CRE) has been a public health risk in several countries, and recent reports indicate the emergence of CRE in food animals. This study was conducted to investigate the occurrence, resistance patterns, and phylogenetic diversity of carbapenem-resistant E. coli (CREC) from chicken. Routine bacteriology, PCR detection of E. coli species, multiplex PCR to detect carbapenemase-encoding genes, and phylogeny of CRE E. coli were conducted. The results show that 24.36% (19/78) were identified as CREC based on the phenotypic identifications of which 17 were positive for the tested carbapenemases genes. The majority, 57.99% (11/19), of the isolates harbored multiple carbapenemase genes. Four isolates harbored all bla NDM, bla OXA, and bla IMP, and five and two different isolates harbored bla NDM and bla OXA and bla OXA and bla IMP, respectively. The meropenem, imipenem, and ertapenem MIC values for the isolates ranged from 2 μg/mL to ≥256 μg/mL. Phylogenetic grouping showed that the CREC isolates belonged to five different groups: groups A, B1, C, D, and unknown. The detection of CREC in this study shows that it has become an emerging problem in farm animals, particularly, in poultry farms. This also implies the potential public health risks posed by CRE from chicken to the consumers.
    Matched MeSH terms: beta-Lactamases/genetics*
  3. Al-Marzooq F, Mohd Yusof MY, Tay ST
    PLoS One, 2015;10(7):e0133654.
    PMID: 26203651 DOI: 10.1371/journal.pone.0133654
    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.
    Matched MeSH terms: beta-Lactamases/genetics
  4. Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Cleary DW, Clarke SC, et al.
    mSphere, 2021 Jan 27;6(1).
    PMID: 33504662 DOI: 10.1128/mSphere.01076-20
    Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes blaNDM-1 and blaOXA-58 in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The blaNDM-1 gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas blaOXA-58 was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance.
    Matched MeSH terms: beta-Lactamases/genetics*
  5. Bert F, Vanjak D, Leflon-Guibout V, Mrejen S, Delpierre S, Redondo A, et al.
    Clin Infect Dis, 2007 Mar 1;44(5):764-5.
    PMID: 17278079
    Matched MeSH terms: beta-Lactamases/genetics
  6. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J Med Microbiol, 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: beta-Lactamases/genetics*
  7. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: beta-Lactamases/genetics*
  8. Chung PY
    FEMS Microbiol Lett, 2016 10;363(20).
    PMID: 27664057
    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
    Matched MeSH terms: beta-Lactamases/genetics
  9. Das S, Pandey AK, Morris DE, Anderson R, Lim V, Wie CC, et al.
    BMC Genomics, 2024 Apr 17;25(1):381.
    PMID: 38632538 DOI: 10.1186/s12864-024-10276-4
    Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.
    Matched MeSH terms: beta-Lactamases/genetics
  10. Gautam D, Dolma KG, Khandelwal B, Goyal RK, Mitsuwan W, Pereira MLG, et al.
    Indian J Med Res, 2023 Oct 01;158(4):439-446.
    PMID: 38006347 DOI: 10.4103/ijmr.ijmr_3470_21
    BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii.

    METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR.

    RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-β-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1.

    INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.

    Matched MeSH terms: beta-Lactamases/genetics
  11. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z
    Curr Issues Mol Biol, 2015;17:11-21.
    PMID: 24821872
    Extended spectrum beta-lactamases (ESBLs) are defined as enzymes produced by certain bacteria that are able to hydrolyze extended spectrum cephalosporin. They are therefore effective against beta-lactam antibiotics such as ceftazidime, ceftriaxone, cefotaxime and oxyimino-monobactam. The objective of the current review is to provide a better understanding of ESBL and the epidemiology of ESBL producing organisms which are among those responsible for antibiotic resistant strains. Globally, ESBLs are considered to be problematic, particularly in hospitalized patients. There is an increasing frequency of ESBL in different parts of the world. The high risk patients are those contaminated with ESBL producer strains as it renders treatment to be ineffective in these patients. Thus, there an immediate needs to identify EBSL and formulate strategic policy initiatives to reduce their prevalence.
    Matched MeSH terms: beta-Lactamases/genetics*
  12. Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA
    Emerg Health Threats J, 2015;8:26011.
    PMID: 25765342 DOI: 10.3402/ehtj.v8.26011
    Background : Antibiotic resistance among Enterobacteriaceae posts a great challenge to the health care service. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is attracting significant attention due to its rapid and global dissemination. The infection is associated with significant morbidity and mortality, thus creating challenges for infection control and managing teams to curb the infection. In Southeast Asia, there have been limited reports and subsequent research regarding CRKP infections. Thus, the study was conducted to characterize CRKP that has been isolated in our setting. Methods : A total of 321 K. pneumoniae were included in the study. Each isolate went through an identification process using an automated identification system. Phenotypic characterization was determined using disk diffusion, modified Hodge test, Epsilometer test, and inhibitor combined disk test. Further detection of carbapenemase genes was carried out using polymerase chain reaction and confirmed by gene sequence analysis. Results : All together, 13 isolates (4.05%) were CRKP and the majority of them were resistant to tested antibiotics except colistin and tigercycline. Among seven different carbapenemase genes studied (blaKPC, bla IMP, bla SME, bla NDM, bla IMI, bla VIM, and bla OXA), only two, bla IMP4 (1.87%) and bla NDM1 (2.18%), were detected in our setting. Conclusion : Evidence suggests that the prevalence of CRKP in our setting is low, and knowledge of Carbapenem-resistant Enterobacteriaceae and CRKP has improved and become available among clinicians.
    Matched MeSH terms: beta-Lactamases/genetics
  13. Hancock SJ, Phan MD, Peters KM, Forde BM, Chong TM, Yin WF, et al.
    PMID: 27872077 DOI: 10.1128/AAC.01740-16
    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies.
    Matched MeSH terms: beta-Lactamases/genetics
  14. Hasan MJ, Shamsuzzaman SM
    Malays J Pathol, 2017 Dec;39(3):277-283.
    PMID: 29279590
    BACKGROUND: The adeB gene in Acinetobacter baumannii regulates the bacterial internal drug efflux pump that plays a significant role in drug resistance. The aim of our study was to determine the occurrence of adeB gene in multidrug resistant and New Delhi metallo-beta-lactamase-1 (NDM- 1) gene in imipenem resistant Acinetobacter baumannii isolated from wound swab samples in a tertiary care hospital of Bangladesh.

    METHODS: A total of 345 wound swab samples were tested for bacterial pathogens. Acinetobacter baumannii was identified by culture and biochemical tests. Antimicrobial susceptibility pattern was determined by the disc diffusion method according to CLSI standards. Extended spectrum beta-lactamases were screened using the double disc synergy technique. Gene encoding AdeB efflux pump and NDM-1 were detected by Polymerase Chain Reaction (PCR).

    RESULTS: A total 22 (6.37%) Acinetobacter baumannii were identified from 345 wound swab samples and 20 (91%) of them were multidrug resistant. High resistance rates to some antibiotics were seen namely, cefotaxime (95%), amoxyclavulanic acid (90%) and ceftriaxone (82%). All the identified Acinetobacter baumannii were sensitive to colistin and 82% to imipenem. Two (9%) ESBL producing Acinetobacter baumannii strains were detected. adeB gene was detected in 16 (80%) out of 20 multidrug resistant Acinetobacter baumannii. 4 (18%) of 22 Acinetobacter baumannii were imipenem resistant. NDM-1 gene was detected in 2 (50%) of the imipenem resistant strains of Acinetobacter baumannii.

    CONCLUSION: The results of this study provide insight into the role of adeB gene as a potential regulator of drug resistance in Acinetobacter baumanni in Bangladesh. NDM-1 gene also contributes in developing such resistance for Acinetobacter baumannii.

    Matched MeSH terms: beta-Lactamases/genetics*
  15. Hashim RB, Husin S, Rahman MM
    Pak J Biol Sci, 2011 Jan 01;14(1):41-6.
    PMID: 21913496
    The present study was aimed to identify the gene of drug resistance betalactamase producing bacteria and clinical features of the infected patients at Hospital University Kebangsaan Malaysia. Blood samples from the patients were collected, processed and betalactamase producing drug resistance bacteria were identified by antibiotic sensitivity testing. Genes of the drug resistance bacteria were detected and characterized by polymerase chain reaction. A total of 34 isolates of drug resistance Betalactamase producing E. coli and Klebsiella spp. were isolated from 2,502 patients. Most common drug resistance gene TEM was found in 50% of the isolates. 11% was found positive for both TEM and SHV. Next 11% of the isolates expressed only SHV genes. Clinical features of the patients were recorded from where the bacteria isolated. Regarding community affiliations 70.5% of the infected patients were Malay 17.6% were Indian and 11.7% were Chinese. Majority of the patients has an underlying pre-morbid condition as reflected by their diagnosis. Better infection control and hygiene in hospitals, plus controlled and prudent use of antibiotics, is required to minimize the impact of drug resistance betalactamase producing bacteria and the spread of infections.
    Matched MeSH terms: beta-Lactamases/genetics
  16. Ho SE, Subramaniam G, Palasubramaniam S, Navaratnam P
    Antimicrob Agents Chemother, 2002 Oct;46(10):3286-7.
    PMID: 12234862
    We have isolated and identified a carbapenem-resistant Pseudomonas aeruginosa strain from Malaysia that produces an IMP-7 metallo-beta-lactamase. This isolate showed high-level resistance to meropenem and imipenem, the MICs of which were 256 and 128 micro g/ml, respectively. Isoelectric focusing analyses revealed pI values of >9.0, 8.2, and 7.8, which indicated the possible presence of IMP and OXA. DNA sequencing confirmed the identity of the IMP-7 determinant.
    Matched MeSH terms: beta-Lactamases/genetics
  17. Ho WS, Balan G, Puthucheary S, Kong BH, Lim KT, Tan LK, et al.
    Microb Drug Resist, 2012 Aug;18(4):408-16.
    PMID: 22394084 DOI: 10.1089/mdr.2011.0222
    The emergence of Escherichia coli resistant to extended-spectrum cephalosporins (ESCs) is of concern as ESC is often used to treat infections by Gram-negative bacteria. One-hundred and ten E. coli strains isolated in 2009-2010 from children warded in a Malaysian tertiary hospital were analyzed for their antibiograms, carriage of extended-spectrum beta-lactamase (ESBL) and AmpC genes, possible inclusion of the beta-lactamase genes on an integron platform, and their genetic relatedness. All E. coli strains were sensitive to carbapenems. About 46% of strains were multidrug resistant (MDR; i.e., resistant to ≥3 antibiotic classes) and almost half (45%) were nonsusceptible to ESCs. Among the MDR strains, high resistance rates were observed for ampicillin (98%), tetracycline (75%), and trimethoprim/sulfamethoxazole (73%). Out of 110 strains, bla(TEM-1) (49.1%), bla(CTX-M) (11.8%), and bla(CMY-2) (6.4%) were detected. Twenty-one strains were ESBL producers. CTX-M-15 was the predominant CTX-M variant found and this is the first report of a CTX-M-27-producing E. coli strain from Malaysia. Majority (3.1%) of the strains harbored class 1 integron-encoded integrases with a predominance of aadA and dfr genes within the integron variable region. No gene cassette encoding ESBL genes was found and integrons were not significantly associated with ESBL or non-ESBL producers. Possible clonal expansion was observed for few CTX-M-15-positive strains but the O25-ST131 E. coli clone known to harbor CTX-M-15 was not detected while CMY-2-positive strains were genetically diverse.
    Matched MeSH terms: beta-Lactamases/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links