Displaying publications 1 - 20 of 318 in total

Abstract:
Sort:
  1. Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA
    AMB Express, 2017 Nov 21;7(1):210.
    PMID: 29164404 DOI: 10.1186/s13568-017-0515-x
    Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2-3 nm small and 9-90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet-visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
    Matched MeSH terms: Biofilms
  2. Razali, M.H., Ismail, N.A., Osman, U.M., Amin, K.A.M.
    ASM Science Journal, 2018;11(101):158-165.
    MyJurnal
    The aim of this work was to investigate the effect of glycerol concentration on mechanical
    and physical properties of gellan gum (GG) biofilm. The biofilm was prepared using solvent
    casting method and the effective glycerol concentration was found to be within 30-50%
    w/w (based on GG weight). At 60 and 70 w/w% of glycerol, the films started to distort
    because the films was flexible and brittle. As glycerol concentration was increased the tensile
    strength (TS) and Youngs modulus (E) of films decreased. Somehow, elongation at break
    (EAB), water vapor transmission rate (WVTR) and swelling of films was increased. Glycerol
    plasticized GG biofilm was thermally stable and flexible, proposed its can be exploited as
    film-forming material and with optimized glycerol concentration it has good mechanical and
    physical properties for edible biofilm.
    Matched MeSH terms: Biofilms
  3. Seder N, Abu Bakar MH, Abu Rayyan WS
    PMID: 33488102 DOI: 10.2147/AABC.S292143
    Introduction: Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome.

    Methods: In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey.

    Results: Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation.

    Conclusion: We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.

    Matched MeSH terms: Biofilms
  4. Ali Ahmed AB, Taha RM
    Adv. Food Nutr. Res., 2011;64:403-16.
    PMID: 22054964 DOI: 10.1016/B978-0-12-387669-0.00031-4
    Biofilms are a natural part of the ecology of the earth. Many biofilms are quite harmful and must be treated or controlled. Other biofilms are beneficial and can be used to help fix serious problems. Biofilms can grow on many different surfaces, including rocks in water, foods, teeth, and various biomedical implants. This bacterial colonization may present the need for additional operations, amputation, or it may even lead to death. The fundamental principles of bacterial cell attachment and biofilm formation are discussed. Biofilms represents a new, wide-open field practice and research that is only going to get hotter with time. Functional organic plasma polymerized coatings are also discussed for their potential as bio-sensitive interfaces, connecting metallic electronic devices with their physiological environments.
    Matched MeSH terms: Biofilms*
  5. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT
    Anaerobe, 2015 Aug;34:132-8.
    PMID: 26028405 DOI: 10.1016/j.anaerobe.2015.05.009
    A conspicuous new concept of pathogens living as the microbial societies in the human host rather than free planktonic cells has raised considerable concerns among scientists and clinicians. Fungal biofilms are communities of cells that possess distinct characteristic such as increased resistance to the immune defence and antimycotic agents in comparison to their planktonic cells counterpart. Therefore, inhibition of the biofilm may represent a new paradigm for antifungal development. In this study, we aim to evaluate the in vitro modulation of vulvovaginal candidiasis (VVC)-causing Candida glabrata biofilms using probiotic lactobacilli strains. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 were shown to have completely inhibited C. glabrata biofilms and the results were corroborated by scanning electron microscopy (SEM), which revealed scanty structures of the mixed biofilms of C. glabrata and probiotic lactobacilli strains. In addition, biofilm-related C. glabrata genes EPA6 and YAK1 were downregulated in response to the probiotic lactobacilli challenges. The present study suggested that probiotic L. rhamnosus GR-1 and L. reuteri RC-14 strains inhibited C. glabrata biofilm by partially impeding the adherence of yeast cells and the effect might be contributed by the secretory compounds produced by these probiotic lactobacilli strains. Further investigations are required to examine and identify the biofilm inhibitory compounds and the mechanism of probiotic actions of these lactobacilli strains.
    Matched MeSH terms: Biofilms/growth & development*
  6. Ibrahim, N.Z., Abdullah, M.
    Ann Dent, 2008;15(1):20-26.
    MyJurnal
    This study aim to evaluate antimicrobial efficacy of sodium hypochlorite (NaOCl) and ozonated water against Enterococci faecalis biofilm. The bacterial biofilm was exposed to 2.62%, 1.31% NaOCl and 0.1 ppm ozonated water over a range of time periods. The presence of viable cells was determined by enumeration of colony forming units (CFU). All experiments were repeated four times (n=4). The effectiveness of the agents was compared using nonparametric Kruskal- Wallis test. The result revealed that 2.62% of NaOCl can completely kill E. faecalis biofilm in 15 minutes whereas 1.31 % NaOCl required a longer time to produce such effect. 0.1 ppm ozonated, however, did not exhibit any antimicrobial effect within the period of time tested. From this study, it can be concluded that 0.1 ppm ozonated water was not comparable with 2.62% and 1.31% NaOCl in antimicrobial efficacy against E. faecalis biofilm.
    Matched MeSH terms: Biofilms
  7. Chung PY, Khoo REY, Liew HS, Low ML
    Ann Clin Microbiol Antimicrob, 2021 Sep 24;20(1):67.
    PMID: 34560892 DOI: 10.1186/s12941-021-00473-4
    BACKGROUND: Methicillin-resistance S. aureus (MRSA) possesses the ability to resist multiple antibiotics and form biofilm. Currently, vancomycin remains the last drug of choice for treatment of MRSA infection. The emergence of vancomycin-resistant S. aureus (VRSA) has necessitated the development of new therapeutic agents against MRSA. In this study, the antimicrobial and antibiofilm activities of two copper-complexes derived from Schiff base (SBDs) were tested individually, and in combination with oxacillin (OXA) and vancomycin (VAN) against reference strains methicillin-susceptible and methicillin-resistant Staphylococcus aureus. The toxicity of the SBDs was also evaluated on a non-cancerous mammalian cell line.

    METHODS: The antimicrobial activity was tested against the planktonic S. aureus cells using the microdilution broth assay, while the antibiofilm activity were evaluated using the crystal violet and resazurin assays. The cytotoxicity of the SBDs was assessed on MRC5 (normal lung tissue), using the MTT assay.

    RESULTS: The individual SBDs showed significant reduction of biomass and metabolic activity in both S. aureus strains. Combinations of the SBDs with OXA and VAN were mainly additive against the planktonic cells and cells in the biofilm. Both the compounds showed moderate toxicity against the MRC5 cell line. The selectivity index suggested that the compounds were more cytotoxic to S. aureus than the normal cells.

    CONCLUSION: Both the SBD compounds demonstrated promising antimicrobial and antibiofilm activities and have the potential to be further developed as an antimicrobial agent against infections caused by MRSA.

    Matched MeSH terms: Biofilms
  8. Teo SP, Bhakta S, Stapleton P, Gibbons S
    Antibiotics (Basel), 2020 Dec 16;9(12).
    PMID: 33339285 DOI: 10.3390/antibiotics9120913
    The present study aimed to screen plants for bioactive compounds with potential antibacterial activities. In our efforts to evaluate plants from Borneo, we isolated and elucidated the structures of four natural products from the bioactive fraction of a chloroform extract of Goniothalamus longistipetes using various chromatographic and spectroscopic techniques. The bioactive compounds were identified as a known styryllactone, (+)-altholactone ((2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (1), a new styryllactone, (2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (2) as well as a new alkaloid, 2,6-dimethoxyisonicotinaldehyde (3) and a new alkenyl-5-hydroxyl-phenyl benzoic acid (4). 1 and 4 showed broad-spectrum anti-bacterial activities against Gram-positive and Gram-negative bacteria as well as acid-fast model selected for this study. Compound 2 only demonstrated activities against Gram-positive bacteria whilst 3 displayed selective inhibitory activities against Gram-positive bacterial strains. Additionally, their mechanisms of anti-bacterial action were also investigated. Using Mycobacterium smegmatis as a fast-growing model of tubercle bacilli, compounds 1, 2 and 4 demonstrated inhibitory activities against whole-cell drug efflux and biofilm formation; two key intrinsic mechanisms of antibiotic resistance. Interestingly, the amphiphilic compound 4 exhibited inhibitory activity against the conjugation of plasmid pKM101 in Escherichia coli using a plate conjugation assay. Plasmid conjugation is a mechanism by which Gram-positive and Gram-negative-bacteria acquire drug resistance and virulence. These results indicated that bioactive compounds isolated from Goniothalamus longistipetes can be potential candidates as 'hits' for further optimisation.
    Matched MeSH terms: Biofilms
  9. Dhabaan GN, AbuBakar S, Cerqueira GM, Al-Haroni M, Pang SP, Hassan H
    Antimicrob Agents Chemother, 2015 Dec 14;60(3):1370-6.
    PMID: 26666943 DOI: 10.1128/AAC.01696-15
    Acinetobacter baumannii has emerged as a notorious multidrug-resistant pathogen, and development of novel control measures is of the utmost importance. Understanding the factors that play a role in drug resistance may contribute to the identification of novel therapeutic targets. Pili are essential for A. baumannii adherence to and biofilm formation on abiotic surfaces as well as virulence. In the present study, we found that biofilm formation was significantly induced in an imipenem-resistant (Imp(r)) strain treated with a subinhibitory concentration of antibiotic compared to that in an untreated control and an imipenem-susceptible (Imp(s)) isolate. Using microarray and quantitative PCR analyses, we observed that several genes responsible for the synthesis of type IV pili were significantly upregulated in the Imp(r) but not in the Imp(s) isolate. Notably, this finding is corroborated by an increase in the motility of the Imp(r) strain. Our results suggest that the ability to overproduce colonization factors in response to imipenem treatment confers biological advantage to A. baumannii and may contribute to clinical success.
    Matched MeSH terms: Biofilms/drug effects
  10. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Biofilms/drug effects*; Biofilms/growth & development
  11. Liew PW, Jong BC, Najimudin N
    Appl Environ Microbiol, 2015 Nov;81(21):7484-95.
    PMID: 26276116 DOI: 10.1128/AEM.02081-15
    A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.
    Matched MeSH terms: Biofilms
  12. Teh AH, Lee SM, Dykes GA
    Appl Environ Microbiol, 2014 Sep;80(17):5154-60.
    PMID: 24928882 DOI: 10.1128/AEM.01493-14
    Campylobacter jejuni is one of the most frequent causes of bacterial gastrointestinal food-borne infection worldwide. This species is part of the normal flora of the gastrointestinal tracts of animals used for food production, including poultry, which is regarded as the primary source of human Campylobacter infections. The survival and persistence of C. jejuni in food processing environments, especially in poultry processing plants, represent significant risk factors that contribute to the spread of this pathogen through the food chain. Compared to other food-borne pathogens, C. jejuni is more fastidious in its growth requirements and is very susceptible to various environmental stressors. Biofilm formation is suggested to play a significant role in the survival of C. jejuni in the food production and processing environment. The aims of this minireview were (i) to examine the evidence that C. jejuni forms biofilms and (ii) to establish the extent to which reported and largely laboratory-based studies of C. jejuni biofilms provide evidence for biofilm formation by this pathogen in food processing environments. Overall existing studies do not provide strong evidence for biofilm formation (as usually defined) by most C. jejuni strains in food-related environments under the combined conditions of atmosphere, temperature, and shear that they are likely to encounter. Simple attachment to and survival on surfaces and in existing biofilms of other species are far more likely to contribute to C. jejuni survival in food-related environments based on our current understanding of this species.
    Matched MeSH terms: Biofilms/growth & development*
  13. Leung DHL, Lim YS, Uma K, Pan GT, Lin JH, Chong S, et al.
    Appl Biochem Biotechnol, 2021 Apr;193(4):1170-1186.
    PMID: 33200267 DOI: 10.1007/s12010-020-03469-6
    Microbial fuel cell (MFC) is a promising technology that utilizes exoelectrogens cultivated in the form of biofilm to generate power from various types of sources supplied. A metal-reducing pathway is utilized by these organisms to transfer electrons obtained from the metabolism of substrate from anaerobic respiration extracellularly. A widely established model organism that is capable of extracellular electron transfer (EET) is Shewanella oneidensis. This review highlights the strategies used in the transformation of S. oneidensis and the recent development of MFC in terms of intervention through genetic modifications. S. oneidensis was genetically engineered for several aims including the study on the underlying mechanisms of EET, and the enhancement of power generation and wastewater treating potential when used in an MFC. Through engineering S. oneidensis, genes responsible for EET are identified and strategies on enhancing the EET efficiency are studied. Overexpressing genes related to EET to enhance biofilm formation, mediator biosynthesis, and respiration appears as one of the common approaches.
    Matched MeSH terms: Biofilms/growth & development*
  14. Nhi-Cong LT, Lien DT, Gupta BS, Mai CTN, Ha HP, Nguyet NTM, et al.
    Appl Biochem Biotechnol, 2020 May;191(1):313-330.
    PMID: 31853877 DOI: 10.1007/s12010-019-03203-x
    Oil pollution in marine environment caused by oil spillage has been a main threat to the ecosystem including the ocean life and to the human being. In this research, three indigenous purple photosynthetic strains Rhodopseudomonas sp. DD4, DQ41, and FO2 were isolated from oil-contaminated coastal zones in Vietnam. The cells of these strains were immobilized on different carriers including cinder beads (CB), coconut fiber (CF), and polyurethane foam (PUF) for diesel oil removal from artificial seawater. The mixed biofilm formed by using CB, CF, and PUF as immobilization supports degraded 90, 91, and 95% of diesel oil (DO) with the initial concentration of 17.2 g/L, respectively, after 14 days of incubation. The adsorption of DO on different systems was accountable for the removal of 12-16% hydrocarbons for different carriers. To the best of our knowledge, this is the first report on diesel oil degradation by purple photosynthetic bacterial biofilms on different carriers. Moreover, using carriers attaching purple photosynthetic bacteria to remove diesel oil in large scale is considered as an essential method for the improvement of a cost-effective and efficient bioremediation manner. This study can be a promising approach to eliminate DO from oil-contaminated seawater.
    Matched MeSH terms: Biofilms/growth & development*
  15. Tay ZH, Ng FL, Thong CH, Lee CW, Gnana Kumar G, Al-Sehemi AG, et al.
    Appl Microbiol Biotechnol, 2024 Dec;108(1):1-14.
    PMID: 38194143 DOI: 10.1007/s00253-023-12951-0
    In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p 
    Matched MeSH terms: Biofilms
  16. Ma, Mei Siang, Zalini Yunus, Ahmad Razi Mohammad Yunus, Zukri Ahmad, Haryanti Toosa
    MyJurnal
    Abstract Water quality in the dental unit waterlines (DUWLs) is important to the patients and dental health care personnel as they are at risk of being infected with opportunistic pathogens such as Pseudomonas or Legionella species. In this study, a total of 86 samples were collected from DUWLs of 19 dental units in 11 Malaysian Armed Forces dental centres (MAFDC). 350 ml water sample was collected in sterile thiosulphite bags from the outlets of 3–way syringe, high speed handpiece, scaler, cup filler, independent water reservoir or the tap of the same surgery respectively. Samples were transported to the laboratory within 24 hours and kept in the refrigerator at 40C. 100ml of each sample was filtered through a 0.45 μm polycarbonate membrane filter. The filter was then inoculated onto plate count agar and incubated at 370 C for 24 hours, after which the formed colonies were enumerated. Another separate 100ml of water sample was poured onto buffered charcoal yeast extract agar and cetrimide agar to culture Legionnella and Pseudomonas respectively. Identification of these bacteria were confirmed by polymerase chain reaction and sequencing. Pseudomonas aeruginosa was detected in 9.5% of the samples but Legionnella was not detected in any of the samples. 77% of the samples met American Dental Association (ADA) recommendation of less than 200 cfu/ml. The result of this study showed that it is difficult if not impossible to eliminate biofilm from the DUWLs. Regular monitor of water quality from DUWL is required to maximise the health of the dental patients and dental health care personnel.
    Matched MeSH terms: Biofilms
  17. Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al.
    Arch Environ Contam Toxicol, 2017 Aug;73(2):230-239.
    PMID: 28534067 DOI: 10.1007/s00244-017-0414-9
    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
    Matched MeSH terms: Biofilms
  18. Yunus J, Wan Dagang WRZ, Jamaluddin H, Jemon K, Mohamad SE, Jonet MA
    Arch Microbiol, 2024 Mar 04;206(4):138.
    PMID: 38436775 DOI: 10.1007/s00203-024-03857-0
    In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms. In this study, the effects of a recombinant intracellular serine protease from Bacillus sp. (SPB) on biofilms from Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa were analyzed. SPB was purified using HisTrap HP column and concentrated using Amicon 30 ultra-centrifugal filter. SPB was added with varying enzyme activity and assay incubation period after biofilms were formed in 96-well plates. SPB was observed to have contrasting effects on different bacterial biofilms, where biofilm degradations were observed for both 7-day-old A. baumannii (37.26%) and S. aureus (71.51%) biofilms. Meanwhile, SPB promoted growth of P. aeruginosa biofilm up to 176.32%. Compatibility between protein components in S. aureus biofilm with SPB as well as a simpler membrane structure morphology led to higher biofilm degradation for S. aureus compared to A. baumannii. However, SPB promoted growth of P. aeruginosa biofilm due likely to its degrading protein factors that are responsible for biofilm detachment and dispersion, thus resulting in more multi-layered biofilm formation. Commercial protease Savinase which was used as a comparison showed degradation for all three bacterial biofilms. The results obtained are unique and will expand our understanding on the effects that bacterial proteases have toward biofilms.
    Matched MeSH terms: Biofilms
  19. Shafiei Z, Rahim ZHA, Philip K, Thurairajah N, Yaacob H
    Arch Oral Biol, 2020 Jan;109:104554.
    PMID: 31563709 DOI: 10.1016/j.archoralbio.2019.104554
    OBJECTIVE: Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.

    DESIGN: Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce populations of single and mixed-species of Streptococcus sanguinis and Streptococcus mutans in a planktonic or/and biofilm and their others reduced virulence. Bacterial populations in the biofilm after 24 h, hydrophobic cell surface activity to n-hexadecane and pH changes at 5 min' intervals until 90 min of incubation were recorded. Total phenolic content and bioactive compounds in the crude aqueous plant extracts were analysed. Regulatory gene expressions of S. mutans adhesins genes (gtfB, gtfC, gbpB and spaP) upon treatment with PEM were investigated in planktonic and biofilm conditions.

    RESULTS: All plant extracts strongly reduced S. mutans in the biofilm compared to S. sanguinis in single and mixed-species. PEM reduced S. mutans by 84% with S. sanguinis 87% in the mixed population. Psidium sp. and PEM highly reduced cell-surface hydrophobicity of the two bacteria thus reducing adherence and biofilm formation. PEM and Mangifera sp. lowered initial pH change in the mixed populations of S. sanguinis and S. mutans. PEM downregulated the S. mutans gtfB gene expression in the single species planktonic and mixed-species biofilms.

    CONCLUSIONS: The effectiveness of PEM in reducing S. mutans within the biofilm, cell-surface hydrophobicity, acid production and adhesin gene (gtfB) expression in mixed-species with S. sanguinis indicates its potential as an antibacterial agent against dental caries. This is attributed to the phenolic content in the PEM.

    Matched MeSH terms: Biofilms/drug effects*
  20. Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA
    Arch Oral Biol, 2016 Oct;70:117-124.
    PMID: 27343694 DOI: 10.1016/j.archoralbio.2016.06.011
    OBJECTIVE: Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.

    METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.

    RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.

    CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.

    Matched MeSH terms: Biofilms/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links