Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF
    ACS Chem Neurosci, 2020 02 19;11(4):485-500.
    PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640
    Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
    Matched MeSH terms: Brain/drug effects
  2. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Brain/drug effects*
  3. Swamy M, Norlina W, Azman W, Suhaili D, Sirajudeen KN, Mustapha Z, et al.
    PMID: 25435633
    BACKGROUND: Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain regions-cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats supplemented with propolis and subjected to kainic acid (KA) mediated excitotoxicity.

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups; Control group and KA group received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150mg/kg body weight), five times every 12 hours. KA group and propolis + KA group were injected subcutaneously with kainic acid (15mg/kg body weight) and were sacrificed after 2 hrs and CC, CB and BS were separated homogenized and used for estimation of GS activity, NO, TBARS, and TAS concentrations by colorimetric methods. Results were analyzed by one-way ANOVA, reported as mean + SD from 6 animals, and p<0.05 considered statistically significant.

    RESULTS: NO was increased (p< 0.001) and GS activity was decreased (p< 0.001) in KA treated group compared to control group as well as propolis + KA treated group. TBARS was decreased and TAS was increased (p< 0.001) in propolis + KA treated group compared KA treated group.

    CONCLUSION: This study clearly demonstrated the restoration of GS activity, NO levels and decreased oxidative stress by propolis in kainic acid mediated excitotoxicity. Hence the propolis can be a possible potential candidate (protective agent) against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Brain/drug effects*
  4. Mohd Zain Z, Ab Ghani S, O'Neill RD
    Amino Acids, 2012 Nov;43(5):1887-94.
    PMID: 22865247 DOI: 10.1007/s00726-012-1365-0
    This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring D-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were D-amino acid oxidase for D-serine sensitivity (linear region slope, 61 ± 7 μA cm(-2) mM(-1); limit of detection, 20 nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1 s, ideal for 'real-time' monitoring, and detection of systemically administered D-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of D-serine in excitotoxicity, and modulation of N-methyl-D-aspartate receptor function by D-serine and glycine in the central nervous system.
    Matched MeSH terms: Brain/drug effects*
  5. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Brain/drug effects
  6. Hamid A, Ibrahim FW, Ming TH, Nasrom MN, Eusoff N, Husain K, et al.
    BMC Complement Altern Med, 2018 Mar 20;18(1):101.
    PMID: 29558939 DOI: 10.1186/s12906-018-2161-5
    BACKGROUND: Zingiber zerumbet (L.) Smith belongs to the Zingiberaceae family that is widely distributed throughout the tropics, particularly in Southeast Asia. It is locally known as 'Lempoyang' and traditionally used to treat fever, constipation and to relieve pain. It is also known to possess antioxidant and anti-inflammatory activities. Based on these antioxidant and anti-inflammatory activities, this study was conducted to investigate the effects of ethyl-acetate extract of Z. zerumbet rhizomes against ethanol-induced brain damage in male Wistar rats.

    METHOD: Twenty-four male Wistar rats were divided into four groups which consist of normal, 1.8 g/kg ethanol (40% v/v), 200 mg/kg Z. zerumbet extract plus ethanol and 400 mg/kg Z. zerumbet plus ethanol. The extract of Z. zerumbet was given once daily by oral gavage, 30 min prior to ethanol exposure via intraperitoneal route for 14 consecutive days. The rats were then sacrificed. Blood and brain homogenate were subjected to biochemical tests and part of the brain tissue was sectioned for histological analysis.

    RESULT: Treatment with ethyl-acetate Z. zerumbet extract at 200 mg/kg and 400 mg/kg significantly reduced the level of malondialdehyde (MDA) and protein carbonyl (p brain homogenate. Both doses of extracts also significantly increased the level of serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as glutathione (GSH) level (p brain damage as shown with higher levels of SOD, CAT, GPx and GSH in the brain homogenate as compared to 200 mg/kg dose. Histological observation of the cerebellum and cerebral cortex showed that the extract prevented the loss of Purkinje cells and retained the number and the shape of the cells.

    CONCLUSION: Ethyl-acetate extract of Z. zerumbet has protective effects against ethanol-induced brain damage and this is mediated through its antioxidant properties. Z. zerumbet extract protects against ethanol-induced brain damage via its antioxidant properties.

    Matched MeSH terms: Brain/drug effects*
  7. Mohd Sairazi NS, K N S S, Asari MA, Mummedy S, Muzaimi M, Sulaiman SA
    BMC Complement Altern Med, 2017 Jan 09;17(1):31.
    PMID: 28068984 DOI: 10.1186/s12906-016-1534-x
    Administration of KA on rodents has resulted in seizures, behavioral changes, oxidative stress, and neuronal degeneration on selective population of neurons in the brain. The present study was undertaken to investigate the extent of neuroprotective effect conferred by Malaysian Tualang Honey (TH), an antioxidant agent, in the cerebral cortex of rats against KA-induced oxidative stress and neurodegeneration in an animal model of KA-induced excitotoxicity.
    Matched MeSH terms: Brain/drug effects
  8. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Brain/drug effects
  9. Venketasubramanian N, Kumar R, Soertidewi L, Abu Bakar A, Laik C, Gan R
    BMJ Open, 2015 Nov 13;5(11):e009866.
    PMID: 26567259 DOI: 10.1136/bmjopen-2015-009866
    INTRODUCTION: NeuroAiD (MLC601, MLC901), a combination of natural products, has been shown to be safe and to aid neurological recovery after brain injuries. The NeuroAiD Safe Treatment (NeST) Registry aims to assess its use and safety in the real-world setting.

    METHODS AND ANALYSIS: The NeST Registry is designed as a product registry that would provide information on the use and safety of NeuroAiD in clinical practice. An online NeST Registry was set up to allow easy entry and retrieval of essential information including demographics, medical conditions, clinical assessments of neurological, functional and cognitive state, compliance, concomitant medications, and side effects, if any, among patients on NeuroAiD. Patients who are taking or have been prescribed NeuroAiD may be included. Participation is voluntary. Data collected are similar to information obtained during standard care and are prospectively entered by the participating physicians at baseline (before initialisation of NeuroAiD) and during subsequent visits. The primary outcome assessed is safety (ie, non-serious and serious adverse event), while compliance and neurological status over time are secondary outcomes. The in-person follow-up assessments are timed with clinical appointments. Anonymised data will be extracted and collectively analysed. Initial target sample size for the registry is 2000. Analysis will be performed after every 500 participants entered with completed follow-up information.

    ETHICS AND DISSEMINATION: Doctors who prescribe NeuroAiD will be introduced to the registry by local partners. The central coordinator of the registry will discuss the protocol and requirements for implementation with doctors who show interest. Currently, the registry has been approved by the Ethics Committees of Universiti Kebangsaan Malaysia (Malaysia) and National Brain Center (Indonesia). In addition, for other countries, Ethics Committee approval will be obtained in accordance with local requirements.

    TRIAL REGISTRATION NUMBER: NCT02536079.

    Matched MeSH terms: Brain/drug effects*
  10. Dineen RA, Pszczolkowski S, Flaherty K, Law ZK, Morgan PS, Roberts I, et al.
    BMJ Open, 2018 02 03;8(2):e019930.
    PMID: 29431141 DOI: 10.1136/bmjopen-2017-019930
    OBJECTIVES: To test whether administration of the antifibrinolytic drug tranexamic acid (TXA) in patients with spontaneous intracerebral haemorrhage (SICH) leads to increased prevalence of diffusion-weighted MRI-defined hyperintense ischaemic lesions (primary hypothesis) or reduced perihaematomal oedema volume, perihaematomal diffusion restriction and residual MRI-defined SICH-related tissue damage (secondary hypotheses).

    DESIGN: MRI substudy nested within the double-blind randomised controlled Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 trial (ISRCTN93732214).

    SETTING: International multicentre hospital-based study.

    PARTICIPANTS: Eligible adults consented and randomised in the TICH-2 trial who were also able to undergo MRI scanning. To address the primary hypothesis, a sample size of n=280 will allow detection of a 10% relative increase in prevalence of diffusion-weighted imaging (DWI) hyperintense lesions in the TXA group with 5% significance, 80% power and 5% imaging data rejection.

    INTERVENTIONS: TICH-2 MRI substudy participants will undergo MRI scanning using a standardised protocol at day ~5 and day ~90 after randomisation. Clinical assessments, randomisation to TXA or placebo and participant follow-up will be performed as per the TICH-2 trial protocol.

    CONCLUSION: The TICH-2 MRI substudy will test whether TXA increases the incidence of new DWI-defined ischaemic lesions or reduces perihaematomal oedema or final ICH lesion volume in the context of SICH.

    ETHICS AND DISSEMINATION: The TICH-2 trial obtained ethical approval from East Midlands - Nottingham 2 Research Ethics Committee (12/EM/0369) and an amendment to allow the TICH-2 MRI sub study was approved in April 2015 (amendment number SA02/15). All findings will be published in peer-reviewed journals. The primary outcome results will also be presented at a relevant scientific meeting.

    TRIAL REGISTRATION NUMBER: ISRCTN93732214; Pre-results.

    Matched MeSH terms: Brain/drug effects*
  11. Malini M, Kwan TK, Perumal R
    Biochem. Mol. Biol. Int., 1994 Feb;32(2):279-90.
    PMID: 8019433
    In vivo studies involved monitoring the effect of morphine administration on catecholamine biosynthesis by the brain while in vitro studies involved studying the effect of morphine on the uptake of tritiated tyrosine by synaptosomes and its subsequent incorporation into the catecholamines. The extremely low levels of these endogenous compounds required the use of High Performance Liquid Chromatography with electrochemical detection. Intra-peritoneal injection of morphine at a dosage of 10 mg/kg did not produce appreciable changes in the catecholamine levels but a dosage of 30 mg/kg morphine was found to elevate dihydroxy phenylacetic acid content. At a dosage of 60 mg/kg, dopamine levels were elevated while noradrenaline was depleted. Morphine, at a concentration of 1 x 10(-5)M increases the incorporation of tritiated tyrosine into dopamine and dihydroxy phenylacetic acid in synaptosomal preparations.
    Matched MeSH terms: Brain/drug effects*
  12. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Brain/drug effects*
  13. Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y
    Biomed Pharmacother, 2021 Dec;144:112250.
    PMID: 34607104 DOI: 10.1016/j.biopha.2021.112250
    The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-β boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.
    Matched MeSH terms: Brain/drug effects*
  14. Harun MSR, Marsh V, Elsaied NA, Webb KF, Elsheikha HM
    Brain Res, 2020 11 01;1746:147002.
    PMID: 32592740 DOI: 10.1016/j.brainres.2020.147002
    Toxoplasma gondii can cause parasitic encephalitis, a life-threatening infection that predominately occurs in immunocompromised individuals. T. gondii has the ability to invade the brain, but the mechanisms by which this parasite crosses the blood-brain-barrier (BBB) remain incompletely understood. The present study reports the changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. Our results indicated that exposure to T. gondii had an adverse impact on the function and integrity of the BMECs - through induction of cell cycle arrest, disruption of the BMEC barrier integrity, reduction of cellular viability and vitality, depolarization of the mitochondrial membrane potential, increase of the DNA fragmentation, and alteration of the expression of immune response and tight junction genes. The calcium channel/P-glycoprotein transporter inhibitor verapamil was effective in inhibiting T. gondii crossing the BMECs in a dose-dependent manner. The present study showed that T. gondii can compromise several functions of BMECs and demonstrated the ability of verapamil to inhibit T. gondii crossing of the BMECs in vitro.
    Matched MeSH terms: Brain/drug effects
  15. Sonali, Singh RP, Sharma G, Kumari L, Koch B, Singh S, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:129-141.
    PMID: 27497076 DOI: 10.1016/j.colsurfb.2016.07.058
    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics.
    Matched MeSH terms: Brain/drug effects*
  16. Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, et al.
    Comput Biol Chem, 2020 Dec;89:107378.
    PMID: 33002716 DOI: 10.1016/j.compbiolchem.2020.107378
    Neurodegenerative diseases have complex etiology and pose a challenge to scientists to develop simple and cost-effective synthetic compounds as potential drug candidates for such diseases. Here, we report an extension of our previously published in silico screening, where we selected four new compounds as AChE inhibitors. Further, based on favorable binding possess, MD simulation and MMGBSA, two most promising compounds (3a and 3b) were selected, keeping in view the ease of synthesis and cost-effectiveness. Due to the critical role of BChE, LOX and α-glucosidase in neurodegeneration, the selected compounds were also screened against these enzymes. The IC50 values of 3a against AChE and BChE found to be 12.53 and 352.42 μM, respectively. Moderate to slight inhibitions of 45.26 % and 28.68 % were presented by 3a against LOX and α-glucosidase, respectively, at 0.5 mM. Insignificant inhibitions were observed with 3b against the four selected enzymes. Further, in vivo trial demonstrated that 3a could significantly diminish AChE levels in the mice brain as compared to the control. These findings were in agreement with the histopathological analysis of the brain tissues. The results corroborate that selected compounds could serve as a potential lead for further development and optimization as AChE inhibitors to achieve cost-effective anti-Alzheimer's drugs.
    Matched MeSH terms: Brain/drug effects
  17. Kumar J, Ismail Z, Hatta NH, Baharuddin N, Hapidin H, Get Bee YT, et al.
    Curr Drug Targets, 2018;19(8):907-915.
    PMID: 28494749 DOI: 10.2174/1389450118666170511144302
    In the past decade, many studies have highlighted the role of metabotropic glutamate receptor subtype 5 (mGlu5) modulators in attenuating alcohol-related biological effects such as alcohol consumption, alcohol-seeking and relapse-like behaviors. Taken together, these findings suggest that pharmacological agents acting at mGlu5 could be promising tools in curbing inebriation. mGlu5s are present abundantly in brain regions known to be involved in emotion regulation, motivation and drug administration. On a cellular level, they are primarily located at the postsynaptic part of the neuron where the receptor is functionally linked to various downstream proteins that are involved in cell signaling and gene transcription that mediate the alcohol-induced neuroplasticity. As well, the discovery of a functional link between mGlu5 and a specific isozyme, Protein Kinase C epsilon (PKCε) in mediating the attenuating effects of selective negative allosteric modulators of mGlu5 such as methyl- 6(phenylethynyl)pyridine (MPEP) and 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (MTEP) has sparked interesting speculations. In this article, we shall review the following: the effects of acute and chronic alcohol intake on mGlu5 signaling; the effects of mGlu5 ligands on alcohol-related neurobehavioral changes that are currently being studied both at pre-clinical and clinical stages; and the mechanisms underlying the pharmacological effects of these drugs.
    Matched MeSH terms: Brain/drug effects
  18. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Brain/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links