Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Chua CS, Bai CH, Shiao CY, Hsu CY, Cheng CW, Yang KC, et al.
    PLoS One, 2017;12(8):e0183960.
    PMID: 28859146 DOI: 10.1371/journal.pone.0183960
    BACKGROUND & AIMS: Irritable bowel syndrome (IBS) manifests as chronic abdominal pain. One pathophysiological theory states that the brain-gut axis is responsible for pain control in the intestine. Although several studies have discussed the structural changes in the brain of IBS patients, most of these studies have been conducted in Western populations. Different cultures and sexes experience different pain sensations and have different pain responses. Accordingly, we aimed to identify the specific changes in the cortical thickness of Asian women with IBS and to compare these data to those of non-Asian women with IBS.

    METHODS: Thirty Asian female IBS patients (IBS group) and 39 healthy individuals (control group) were included in this study. Brain structural magnetic resonance imaging was performed. We used FreeSurfer to analyze the differences in the cortical thickness and their correlations with patient characteristics.

    RESULTS: The left cuneus, left rostral middle frontal cortex, left supramarginal cortex, right caudal anterior cingulate cortex, and bilateral insula exhibited cortical thinning in the IBS group compared with those in the controls. Furthermore, the brain cortical thickness correlated negatively the severity as well as duration of abdominal pain.

    CONCLUSIONS: Some of our findings differ from those of Western studies. In our study, all of the significant brain regions in the IBS group exhibited cortical thinning compared with those in the controls. The differences in cortical thickness between the IBS patients and controls may provide useful information to facilitate regulating abdominal pain in IBS patients. These findings offer insights into the association of different cultures and sexes with differences in cortical thinning in patients with IBS.

    Matched MeSH terms: Brain Mapping
  2. Yuvaraj R, Murugappan M, Ibrahim NM, Omar MI, Sundaraj K, Mohamad K, et al.
    J Integr Neurosci, 2014 Mar;13(1):89-120.
    PMID: 24738541 DOI: 10.1142/S021963521450006X
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.
    Matched MeSH terms: Brain Mapping
  3. Bamatraf S, Hussain M, Aboalsamh H, Qazi EU, Malik AS, Amin HU, et al.
    Comput Intell Neurosci, 2016;2016:8491046.
    PMID: 26819593 DOI: 10.1155/2016/8491046
    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.
    Matched MeSH terms: Brain Mapping
  4. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:723213.
    PMID: 25276860 DOI: 10.1155/2014/723213
    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.
    Matched MeSH terms: Brain Mapping
  5. Yick YY, Buratto LG, Schaefer A
    Neuroreport, 2016 08 03;27(11):864-8.
    PMID: 27295027 DOI: 10.1097/WNR.0000000000000628
    Here, we report evidence that electrophysiological neural activity preceding the onset of emotional pictures can predict whether they will be remembered or forgotten 24 h later, whereas the same effect was not observed for neutral pictures. In contrast to previous research, we observed this effect using a paradigm in which participants could not predict the emotional or the neutral content of the pictures before their onset. These effects were obtained alongside significant behavioural effects of superior recognition memory for emotional compared with neutral items. These findings suggest that the preferential encoding of emotional events in memory is determined by fluctuations in the availability of processing resources just before event onset. This explanation argues in favour of mediational models of emotional memory, which contend that emotional information is preferentially encoded because it mobilizes a greater amount of processing resources than neutral information.
    Matched MeSH terms: Brain Mapping
  6. Babu MGR, Kadavigere R, Koteshwara P, Sathian B, Rai KS
    Sci Rep, 2020 09 30;10(1):16177.
    PMID: 32999361 DOI: 10.1038/s41598-020-73221-x
    Studies provide evidence that practicing meditation enhances neural plasticity in reward processing areas of brain. No studies till date, provide evidence of such changes in Rajyoga meditation (RM) practitioners. The present study aimed to identify grey matter volume (GMV) changes in reward processing areas of brain and its association with happiness scores in RM practitioners compared to non-meditators. Structural MRI of selected participants matched for age, gender and handedness (n = 40/group) were analyzed using voxel-based morphometric method and Oxford Happiness Questionnaire (OHQ) scores were correlated. Significant increase in OHQ happiness scores were observed in RM practitioners compared to non-meditators. Whereas, a trend towards significance was observed in more experienced RM practitioners, on correlating OHQ scores with hours of meditation experience. Additionally, in RM practitioners, higher GMV were observed in reward processing centers-right superior frontal gyrus, left inferior orbitofrontal cortex (OFC) and bilateral precuneus. Multiple regression analysis showed significant association between OHQ scores of RM practitioners and reward processing regions right superior frontal gyrus, left middle OFC, right insula and left anterior cingulate cortex. Further, with increasing hours of RM practice, a significant positive association was observed in bilateral ventral pallidum. These findings indicate that RM practice enhances GMV in reward processing regions associated with happiness.
    Matched MeSH terms: Brain Mapping
  7. Petit O, Merunka D, Anton JL, Nazarian B, Spence C, Cheok AD, et al.
    PLoS One, 2016;11(7):e0156333.
    PMID: 27428267 DOI: 10.1371/journal.pone.0156333
    Taking into account how people value the healthiness and tastiness of food at both the behavioral and brain levels may help to better understand and address overweight and obesity-related issues. Here, we investigate whether brain activity in those areas involved in self-control may increase significantly when individuals with a high body-mass index (BMI) focus their attention on the taste rather than on the health benefits related to healthy food choices. Under such conditions, BMI is positively correlated with both the neural responses to healthy food choices in those brain areas associated with gustation (insula), reward value (orbitofrontal cortex), and self-control (inferior frontal gyrus), and with the percent of healthy food choices. By contrast, when attention is directed towards health benefits, BMI is negatively correlated with neural activity in gustatory and reward-related brain areas (insula, inferior frontal operculum). Taken together, these findings suggest that those individuals with a high BMI do not necessarily have reduced capacities for self-control but that they may be facilitated by external cues that direct their attention toward the tastiness of healthy food. Thus, promoting the taste of healthy food in communication campaigns and/or food packaging may lead to more successful self-control and healthy food behaviors for consumers with a higher BMI, an issue which needs to be further researched.
    Matched MeSH terms: Brain Mapping
  8. Auer T, Dewiputri WI, Frahm J, Schweizer R
    Neuroscience, 2018 May 15;378:22-33.
    PMID: 27133575 DOI: 10.1016/j.neuroscience.2016.04.034
    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.
    Matched MeSH terms: Brain Mapping
  9. Salih QA, Ramli AR, Mahmud R, Wirza R
    MedGenMed, 2005;7(2):1.
    PMID: 16369380
    Different approaches to gray and white matter measurements in magnetic resonance imaging (MRI) have been studied. For clinical use, the estimated values must be reliable and accurate when, unfortunately, many techniques fail on these criteria in an unrestricted clinical environment. A recent method for tissue clusterization in MRI analysis has the advantage of great simplicity, and it takes the account of partial volume effects. In this study, we will evaluate the intensity of MR sequences known as T1-weighted images in an axial sliced section. Intensity group clustering algorithms are proposed to achieve further diagnosis for brain MRI, which has been hardly studied. Subjective study has been suggested to evaluate the clustering group intensity in order to obtain the best diagnosis as well as better detection for the suspected cases. This technique makes use of image tissue biases of intensity value pixels to provide 2 regions of interest as techniques. Moreover, the original mathematic solution could still be used with a specific set of modern sequences. There are many advantages to generalize the solution, which give far more scope for application and greater accuracy.
    Matched MeSH terms: Brain Mapping/methods*
  10. Jatoi MA, Kamel N, Malik AS, Faye I
    Australas Phys Eng Sci Med, 2014 Dec;37(4):713-21.
    PMID: 25359588 DOI: 10.1007/s13246-014-0308-3
    Human brain generates electromagnetic signals during certain activation inside the brain. The localization of the active sources which are responsible for such activation is termed as brain source localization. This process of source estimation with the help of EEG which is also known as EEG inverse problem is helpful to understand physiological, pathological, mental, functional abnormalities and cognitive behaviour of the brain. This understanding leads for the specification for diagnoses of various brain disorders such as epilepsy and tumour. Different approaches are devised to exactly localize the active sources with minimum localization error, less complexity and more validation which include minimum norm, low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, Multiple Signal classifier, focal under determined system solution etc. This paper discusses and compares the ability of localizing the sources for two low resolution methods i.e., sLORETA and eLORETA respectively. The ERP data with visual stimulus is used for comparison at four different time instants for both methods (sLORETA and eLORETA) and then corresponding activation in terms of scalp map, slice view and cortex map is discussed.
    Matched MeSH terms: Brain Mapping/methods*
  11. Nair SR, Tan LK, Mohd Ramli N, Lim SY, Rahmat K, Mohd Nor H
    Eur Radiol, 2013 Jun;23(6):1459-66.
    PMID: 23300042 DOI: 10.1007/s00330-012-2759-9
    OBJECTIVE: To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD).

    METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.

    RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.

    CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.

    KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

    Matched MeSH terms: Brain Mapping/methods
  12. Habib MA, Ibrahim F, Mohktar MS, Kamaruzzaman SB, Rahmat K, Lim KS
    World Neurosurg, 2016 Apr;88:576-585.
    PMID: 26548833 DOI: 10.1016/j.wneu.2015.10.096
    BACKGROUND: Electroencephalography source imaging (ESI) is a promising tool for localizing the cortical sources of both ictal and interictal epileptic activities. Many studies have shown the clinical usefulness of interictal ESI, but very few have investigated the utility of ictal ESI. The aim of this article is to examine the clinical usefulness of ictal ESI for epileptic focus localization in patients with refractory focal epilepsy, especially extratemporal lobe epilepsy.

    METHODS: Both ictal and interictal ESI were performed by the use of patient-specific realistic forward models and 3 different linear distributed inverse models. Lateralization as well as concordance between ESI-estimated focuses and single-photon emission computed tomography (SPECT) focuses were assessed.

    RESULTS: All the ESI focuses (both ictal and interictal) were found lateralized to the same hemisphere as ictal SPECT focuses. Lateralization results also were in agreement with the lesion sides as visualized on magnetic resonance imaging. Ictal ESI results, obtained from the best-performing inverse model, were fully concordant with the same cortical lobe as SPECT focuses, whereas the corresponding concordance rate is 87.50% in case of interictal ESI.

    CONCLUSIONS: Our findings show that ictal ESI gives fully lateralized and highly concordant results with ictal SPECT and may provide a cost-effective substitute for ictal SPECT.

    Matched MeSH terms: Brain Mapping/methods*
  13. Palaniappan R, Paramesran R, Nishida S, Saiwaki N
    IEEE Trans Neural Syst Rehabil Eng, 2002 Sep;10(3):140-8.
    PMID: 12503778
    This paper proposes a new brain-computer interface (BCI) design using fuzzy ARTMAP (FA) neural network, as well as an application of the design. The objective of this BCI-FA design is to classify the best three of the five available mental tasks for each subject using power spectral density (PSD) values of electroencephalogram (EEG) signals. These PSD values are extracted using the Wiener-Khinchine and autoregressive methods. Ten experiments employing different triplets of mental tasks are studied for each subject. The findings show that the average BCI-FA outputs for four subjects gave less than 6% of error using the best triplets of mental tasks identified from the classification performances of FA. This implies that the BCI-FA can be successfully used with a tri-state switching device. As an application, a proposed tri-state Morse code scheme could be utilized to translate the outputs of this BCI-FA design into English letters. In this scheme, the three BCI-FA outputs correspond to a dot and a dash, which are the two basic Morse code alphabets and a space to denote the end (or beginning) of a dot or a dash. The construction of English letters using this tri-state Morse code scheme is determined only by the sequence of mental tasks and is independent of the time duration of each mental task. This is especially useful for constructing letters that are represented as multiple dots or dashes. This combination of BCI-FA design and the tri-state Morse code scheme could be developed as a communication system for paralyzed patients.
    Matched MeSH terms: Brain Mapping/methods*
  14. Ramli N, Lim CH, Rajagopal R, Tan LK, Seow P, Ariffin H
    Pediatr Radiol, 2020 08;50(9):1277-1283.
    PMID: 32591982 DOI: 10.1007/s00247-020-04717-x
    BACKGROUND: Intrathecal and intravenous chemotherapy, specifically methotrexate, might contribute to neural microstructural damage.

    OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.

    MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.

    RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.

    CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.

    Matched MeSH terms: Brain Mapping/methods
  15. Adeshina AM, Hashim R
    Interdiscip Sci, 2016 Mar;8(1):53-64.
    PMID: 26260066 DOI: 10.1007/s12539-015-0274-9
    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications.
    Matched MeSH terms: Brain Mapping
  16. Elaina NS, Malik AS, Shams WK, Badruddin N, Abdullah JM, Reza MF
    Clin Neuroradiol, 2018 Jun;28(2):267-281.
    PMID: 28116447 DOI: 10.1007/s00062-017-0557-0
    PURPOSE: To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches.

    MATERIAL AND METHODS: Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests.

    RESULTS: The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches.

    CONCLUSION: Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.

    Matched MeSH terms: Brain Mapping
  17. Shekh Ibrahim SA, Hamzah N, Abdul Wahab AR, Abdullah JM, Nurul Hashimah Ahamed Hassain Malim, Sumari P, et al.
    Malays J Med Sci, 2020 Jul;27(4):1-8.
    PMID: 32863741 DOI: 10.21315/mjms2020.27.4.1
    Universiti Sains Malaysia has started the Big Brain Data Initiative project since the last two years as brain mapping techniques have proven to be important in understanding the molecular, cellular and functional mechanisms of the brain. This Big Brain Data Initiative can be a platform for neurophysicians and neurosurgeons, psychiatrists, psychologists, cognitive neuroscientists, neurotechnologists and other researchers to improve brain mapping techniques. Data collection from a cohort of multiracial population in Malaysia is important for present and future research and finding cure for neurological and mental illness. Malaysia is one of the participant of the Global Brain Consortium (GBC) supported by the World Health Organization. This project is a part of its contribution via the third GBC goal which is influencing the policy process within and between high-income countries and low- and middle-income countries, such as pathways for fair data-sharing of multi-modal imaging data, starting with electroencephalographic data.
    Matched MeSH terms: Brain Mapping
  18. Begum T, Reza F, Ahmed I, Abdullah JM
    J Integr Neurosci, 2014 Mar;13(1):71-88.
    PMID: 24738540 DOI: 10.1142/S0219635214500058
    Simple geometric and organic shapes and their arrangement are being used in different neuropsychology tests for the assessment of cognitive function, special memory and also for the therapy purpose in different patient groups. Until now there is no electrophysiological evidence of cognitive function determination for simple geometric, organic shapes and their arrangement. Then the main objective of this study is to know the cortical processing and amplitude, latency of visual induced N170 and P300 event related potential components on different geometric, organic shapes and their arrangement and different educational influence on it, which is worthwhile to know for the early and better treatment for those patient groups. While education influenced on cognitive function by using auditory oddball task, little is known about the influence of education on cognitive function induced by visual attention task in case of the choice of geometric, organic shapes and their arrangements. Using a 128-electrode sensor net, we studied the responses of the choice of the different geometric and organic shapes randomly in experiment 1 and their arrangements in experiment 2 in the high, medium and low education groups. In both experiments, subjects push the button "1" or "2" if like or dislike, respectively. Total 45 healthy subjects (15 in each group) were recruited. ERPs were measured from 11 electrode sites and analyzed to see the evoked N170/N240 and P300 ERP components. There were no differences between like and dislike in amplitudes even in latencies in every stimulus in both experiments. We fixed geometric shapes and organic shapes stimuli only, not like and dislike. Upon the stimulus types, N170 ERP component was found instead of N240, in occipito-temporal (T5, T6, O1 and O2) locations where the amplitude is the highest at O2 location and P300 was distributed in the central (Cz and Pz) locations in both experiments in all groups. In experiment 1, significant low amplitude and non-significant larger latency of the N170 component are found out at O1 location for both stimuli in low education group comparing medium education groups, but in experiment 2, there is no significant difference between stimuli among groups in amplitude and latency. In both experiments, P300 component was found in Cz and Pz locations though the amplitudes are higher at Cz than Pz areas. In experiment 1, medium education group evoked significantly (geometric shape stimuli, P = 0.05; organic shape stimuli, P = 0.02) higher amplitude of P300 component comparing low education group at Cz location. Whereas, there is no significant difference of amplitudes among groups across stimuli in Cz and Pz locations in experiment 2. Latencies have no significant differences in both experiments among groups also, but longer latency are found in low education group at Cz location comparing medium education group, though not significant. We conclude that simple geometric shapes, organic shapes and their arrangements evoked visual N170 component at temporo-occipital areas with right lateralization and P300 ERP component at centro-parietal areas. Significant low amplitude of N170 and P300 ERP components and longer latencies during different shape stimuli in low education group prove that, low education significantly influence on visual cognitive functions in low education group.
    Matched MeSH terms: Brain Mapping*
  19. Ng SC, Raveendran P
    IEEE Trans Biomed Eng, 2009 Aug;56(8):2024-34.
    PMID: 19457744 DOI: 10.1109/TBME.2009.2021987
    The mu rhythm is an electroencephalogram (EEG) signal located at the central region of the brain that is frequently used for studies concerning motor activity. Quite often, the EEG data are contaminated with artifacts and the application of blind source separation (BSS) alone is insufficient to extract the mu rhythm component. We present a new two-stage approach to extract the mu rhythm component. The first stage uses second-order blind identification (SOBI) with stationary wavelet transform (SWT) to automatically remove the artifacts. In the second stage, SOBI is applied again to find the mu rhythm component. Our method is first compared with independent component analysis with discrete wavelet transform (ICA-DWT) as well as SOBI-DWT, ICA-SWT, and regression method for artifact removal using simulated EEG data. The results showed that the regression method is more effective in removing electrooculogram (EOG) artifacts, while SOBI-SWT is more effective in removing electromyogram (EMG) artifacts as compared to the other artifact removal methods. Then, all the methods are compared with the direct application of SOBI in extracting mu rhythm components on simulated and actual EEG data from ten subjects. The results showed that the proposed method of SOBI-SWT artifact removal enhances the extraction of the mu rhythm component.
    Matched MeSH terms: Brain Mapping/methods
  20. Yazdani S, Yusof R, Karimian A, Mitsukira Y, Hematian A
    PLoS One, 2016;11(4):e0151326.
    PMID: 27096925 DOI: 10.1371/journal.pone.0151326
    Image segmentation of medical images is a challenging problem with several still not totally solved issues, such as noise interference and image artifacts. Region-based and histogram-based segmentation methods have been widely used in image segmentation. Problems arise when we use these methods, such as the selection of a suitable threshold value for the histogram-based method and the over-segmentation followed by the time-consuming merge processing in the region-based algorithm. To provide an efficient approach that not only produce better results, but also maintain low computational complexity, a new region dividing based technique is developed for image segmentation, which combines the advantages of both regions-based and histogram-based methods. The proposed method is applied to the challenging applications: Gray matter (GM), White matter (WM) and cerebro-spinal fluid (CSF) segmentation in brain MR Images. The method is evaluated on both simulated and real data, and compared with other segmentation techniques. The obtained results have demonstrated its improved performance and robustness.
    Matched MeSH terms: Brain Mapping/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links