Displaying publications 1 - 20 of 94 in total

Abstract:
Sort:
  1. Latifah O, Ahmed OH, Susilawati K, Majid NM
    Waste Manag Res, 2015 Apr;33(4):322-31.
    PMID: 25819928 DOI: 10.1177/0734242X15576771
    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives.
    Matched MeSH terms: Germination/drug effects
  2. Muhamad H, Ai TY, Khairuddin NS, Amiruddin MD, May CY
    Trop Life Sci Res, 2014 Dec;25(2):41-51.
    PMID: 27073598 MyJurnal
    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.
    Matched MeSH terms: Germination
  3. Thu BT, Van Minh T, Lim BP, Keng CL
    Trop Life Sci Res, 2011 Dec;22(2):37-43.
    PMID: 24575216
    Seeds of two selected clones of Artemisia annua L., TC1 and TC2, were germinated in a greenhouse. Four-week-old seedlings from both clones were grown in the Thù Đúc province of Ho Chi Minh City on 2(nd) January 2009 and Đà Lat on 20(th) January 2009. During this study period in Thù Đúc province, which is situated 4-5 m above sea level, was experiencing a tropical, dry season with temperatures ranging from 26.2°C-32.8°C. Đà Lat, situated at 1500-2000 m above sea level, was having temperate, dry season with lower temperatures, ranging from 10.5°C-18.0°C. The high temperatures and low elevation in Thù Đúc Province led to slow vegetative growth for all of the plants from the two different clones and the artemisinin contents were significantly reduced. The temperate environment of Đà Lat supported robustly growing plants, with plant heights and branch lengths 4-5 times taller and longer that those planted at Thù Đúc Province. The artemisinin contents of A. annua planted at Đà Lat were 3-4 times greater than those cultivated at Thù Đúc Province. Hence, this study indicated that the variations observed in plant growth and artemisinin contents were due to temperature effects because the two selected clones were genetically homogenous. The cold weather of Đà Lat was suitable for planting of A. annua as opposed to the tropical weather of Thù Đúc Province.
    Matched MeSH terms: Germination
  4. Hussain ZP, Man A, Othman AS
    Trop Life Sci Res, 2010 Dec;21(2):27-40.
    PMID: 24575197
    Weedy rice (WR) is found in many direct-seeded rice fields. WR possesses morphological characteristics that are similar to cultivated rice varieties in the early stage of growth, making them more difficult to control than other weeds. A comparative morphological study was conducted by collecting WR accessions from four sites within the Pulau Pinang rice growing areas. The objective of the study was to characterise WR accessions of the Pulau Pinang rice granary by comparing their morphological characteristics to those of commercially grown rice in the area. Their morphometric relations were established by comparing 17 morphological characteristics of the WR accessions and the commercial varieties. A total of 36 WR morphotypes were identified from these 4 sites based on 17 characteristics, which included grain shattering habit and germination rate. The Principal Component Analysis (PCA) showed that 45.88% of the variation observed among the WR accessions and commercial varieties were within the first 3 axes. PB6, PP2 and SGA5 WR accessions had a higher number of tillers and longer panicle lengths, culm heights and leaf lengths compared to the commercial rice. The grain sizes of the commercial varieties were slightly longer, and the chlorophyll contents at 60-70 days after sowing (DAS) were higher than those of the WR accessions. Results from this study are useful for predicting potential WR accession growth, which might improve WR management and agriculture practices that control WR in the future.
    Matched MeSH terms: Germination
  5. Zainudin PMD Hussain, Azmi Man, Ahmad Sofiman Othman
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Weedy rice (WR) is found in many direct-seeded rice fields. WR possesses morphological characteristics that are similar to cultivated rice varieties in the early stage of growth, making them more difficult to control than other weeds. A comparative morphological study was conducted by collecting WR accessions from four sites within the Pulau Pinang rice growing areas. The objective of the study was to characterise WR accessions of the Pulau Pinang rice granary by comparing their morphological characteristics to those of commercially grown rice in the area. Their morphometric relations were established by comparing 17 morphological characteristics of the WR accessions and the commercial varieties. A total of 36 WR morphotypes were identified from these 4 sites based on 17 characteristics, which included grain shattering habit and germination rate. The Principal Component Analysis (PCA) showed that 45.88% of the variation observed among the WR accessions and commercial varieties were within the first 3 axes. PB6, PP2 and SGA5 WR accessions had a higher number of tillers and longer panicle lengths, culm heights and leaf lengths compared to the commercial rice. The grain
    sizes of the commercial varieties were slightly longer, and the chlorophyll contents at 60–70 days after sowing (DAS) were higher than those of the WR accessions. Results from this study are useful for predicting potential WR accession growth, which might improve WR management and agriculture practices that control WR in the future.
    Matched MeSH terms: Germination
  6. Bui Thi Tuong Thu, Tran Van Minh, Boey, Peng Lim, Chan, Lai Keng
    Trop Life Sci Res, 2011;22(2):37-43.
    MyJurnal
    Seeds of two selected clones of Artemisia annua L., TC1 and TC2, were germinated in a greenhouse. Four-week-old seedlings from both clones were grown in the Thù Ðúc province of Ho Chi Minh City on 2nd January 2009 and Ðà Lat on 20 th January 2009. During this study period in Thù Ðúc province, which is situated 4–5 m above sea level, was experiencing a tropical, dry season with temperatures ranging from 26.2°C–32.8°C. Ðà Lat, situated at 1500–2000 m above sea level, was having temperate, dry season with lower temperatures, ranging from 10.5°C–18.0°C. The high temperatures and low elevation in Thù Ðúc Province led to slow vegetative growth for all of the plants from the two different clones and the artemisinin contents were significantly reduced. The temperate environment of Ðà Lat supported robustly growing plants, with plant heights and branch lengths 4–5 times taller and longer that those planted at Thù Ðúc Province. The artemisinin contents of A. annua planted at Ðà Lat were 3–4 times greater than those cultivated at Thù Ðúc Province. Hence, this study indicated that the variations observed in plant growth and artemisinin contents were due to temperature effects because the two selected clones were genetically homogenous. The cold weather of Ðà Lat was suitable for planting of A. annua as opposed to the tropical weather of Thù Ðúc Province.
    Matched MeSH terms: Germination
  7. Islam AK, Anuar N, Yaakob Z, Ghani JA, Osman M
    ScientificWorldJournal, 2013;2013:935981.
    PMID: 24222756 DOI: 10.1155/2013/935981
    Six parents of Jatropha curcas were crossed in half diallel fashion, and the F 1s were evaluated to determine the combining ability for nine germination parameters. The ratio between general combining ability (GCA) and specific combining ability (SCA) variances indicated preponderance of additive gene action for all the characters except germination percentage, time of 50% germination, seedling length, and seedling vigor index. The parents P 1 and P 2 were the best general combiner for most of the characters studied. The cross P 1 × P 5 was the best specific combiner for speed of emergence, germination percentage, germination energy, germination index, and seedling vigor index, the cross P 2 × P 5 for mean germination time, time of 50% germination, and seedling length, and the cross P 4 × P 5 for number of days to first germination. The germination percentage varied from 58.06 to 92.76% among the parents and 53.43 to 98.96% among the hybrids. The highest germination (98.96%) was observed in hybrid P 2 × P 4, and none of the hybrids or parents showed 100% germination. The highest germination index (GI) and seedling vigor index (SVI) were found in hybrid P 1 × P 5 and P 2 × P 5, respectively. The results of this study provide clue for the improvement of Jatropha variety through breeding program.
    Matched MeSH terms: Germination/genetics*
  8. Talei D, Valdiani A, Maziah M, Mohsenkhah M
    ScientificWorldJournal, 2013;2013:408026.
    PMID: 24307869 DOI: 10.1155/2013/408026
    Germination is a key process in plants' phenological cycles. Accelerating this process could lead to improvment of the seedling growth as well as the cultivation efficiency. To achieve this, the effect of microwave frequency on the germination of rice seeds was examined. The physiological feedbacks of the MR 219 rice variety in terms of seed germination rate (GR), germination percentage (GP), and mean germination time (MGT) were analyzed by exposing its seeds to 2450 MHz of microwave frequency for one, four, seven, and ten hours. It was revealed that exposing the seeds to the microwave frequency for 10 hours resulted in the highest GP. This treatment led to 100% of germination after three days with a mean germination time of 2.1 days. Although the other exposure times of microwave frequency caused the moderate effects on germination with a GP(a3) ranged from 93% to 98%, they failed to reduce the MGT(a3). The results showed that ten-hour exposure times of microwave frequency for six days significantly facilitated and improved the germination indices (primary shoot and root length). Therefore, the technique is expected to benefit the improvement of rice seed germination considering its simplicity and efficacy in increasing the germination percentage and rate as well as the primary shoot and root length without causing any environmental toxicity.
    Matched MeSH terms: Germination/radiation effects*
  9. Taha RM, Saleh A, Mahmad N, Hasbullah NA, Mohajer S
    ScientificWorldJournal, 2012;2012:578020.
    PMID: 22919338 DOI: 10.1100/2012/578020
    Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3-5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS) medium supplemented with 1.5 mg/L benzylaminopurine (BAP). They were encapsulated in 3% (w/v) sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA). Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15-30 days) was also investigated. The maximum germination and plantlet regeneration (100.0%) were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67%) was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.
    Matched MeSH terms: Germination*
  10. Jahan N, Abd Manan F, Mansoor A, Zaidi MA, Shahwani MN, Javed MA
    ScientificWorldJournal, 2018;2018:8180174.
    PMID: 30356418 DOI: 10.1155/2018/8180174
    Rice production is decreasing by abiotic stresses like heavy metals. In such circumstances, producing food for growing human population is a challenge for plant breeders. Excess of Al3+ in soil has become threat for high yield of rice. Improvement of crop is one of potential solution for high production. The aim of this study was to develop the new method for optimization of Al3+ toxicity tolerance in indica rice at germination stag using two-way ANOVA and Duncan's multiple-range test (DMRT). Seeds of two indica rice cultivars (Pokkali and Pak Basmati) were exposed in different concentrations (control, 5 mM, 15 mM, and 20 mM) of Al3+ toxicity at pH 4 ±0.2 for two weeks. Germination traits such as final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean time of germination (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC) and growth traits such as root length (RL), shoot length (SL), total dry biomass (TDB), and germination vigour index (GVI) were measured. To obtain the maximum number of significance (≤ 0.01%) parameters in each concentration of Al3+ toxicity with control, two-way ANOVA was established and comparison of mean was done using DMRT. The results showed that 5 mM, 10 mM, and 15 mM have less significant effects on the above-mentioned parameters. However, 20 mM concentration of Al3+ produced significant effects (≤ 0.01%). Therefore, 20 mM of Al3+ is considered optimized limit for indica cultivars (Pokkali and Pak Basmati).
    Matched MeSH terms: Germination/drug effects*; Germination/physiology
  11. Hata EM, Yusof MT, Zulperi D
    Plant Pathol J, 2021 Apr;37(2):173-181.
    PMID: 33866759 DOI: 10.5423/PPJ.OA.05.2020.0083
    The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 μmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.
    Matched MeSH terms: Germination
  12. Shen Z, Som AM, Wang F, Jin F, McMillan O, Al-Tabbaa A
    Sci Total Environ, 2016 Jan 15;542(Pt A):771-6.
    PMID: 26551277 DOI: 10.1016/j.scitotenv.2015.10.057
    A field remediation treatment was carried out to examine the long-term effect of biochar on the immobilisation of metals and the revegetation of a contaminated site in Castleford, UK. The extracted concentrations of nickel (Ni) (II) and zinc (Zn) (II) in the carbonic acid leaching tests were reduced by 83-98% over three years. The extracted Ni (II) and Zn (II) concentrations three years after the treatment were comparable to a cement-based treatment study carried out in a parallel manner on the same site. The sequential extraction results indicated that biochar addition (0.5-2%) increased the residue fractions of Ni (II) (from 51% to 61-66%) and Zn (II) (from 7% to 27-35%) in the soils through competitive sorption, which may have resulted in the reduction of leachabilities of Ni (II) (from 0.35% to 0.12-0.15%) and Zn (II) (from 0.12% to 0.01%) in the plots with biochar compared with that without biochar three years after the treatment. The germination of grass in the plots on site failed. Further laboratory pot study suggested that larger amounts of biochar (5% or more) and compost (5% or more) were needed for the success of revegetation on this site. This study suggests the effectiveness and potential of biochar application in immobilising heavy metals in contaminated site in the long term.
    Matched MeSH terms: Germination
  13. Doni F, Isahak A, Che Mohd Zain CR, Mohd Ariffin S, Wan Mohamad WN, Wan Yusoff WM
    Springerplus, 2014;3:532.
    PMID: 25279323 DOI: 10.1186/2193-1801-3-532
    BACKGROUND: Trichoderma sp. SL2 has been previously reported to enhance rice germination, vigour, growth and physiological characteristics. The use of Potato Dextrose Agar as carrier of Trichoderma sp. SL2 inoculant is not practical for field application due to its short shelf life and high cost. This study focuses on the use of corn and sugarcane bagasse as potential carriers for Trichoderma sp. SL2 inoculants.

    FINDINGS: A completely randomized design was applied for this study. Trichoderma sp. SL2 suspension mixed with corn and sugarcane bagasse were used as treatment mixture in soil. Growth parameters including rice seedling height, root length, wet weight, leaf number and biomass were measured and compared to control. The results showed that Trichoderma sp. SL2 mixed with corn significantly enhanced rice seedlings root length, wet weight and biomass compared to Trichoderma sp. SL2 mixed with sugarcane bagasse and control.

    CONCLUSION: Corn can be a potential carrier for Trichoderma spp. inoculants for field application.

    Matched MeSH terms: Germination
  14. Ali LG, Nulit R, Ibrahim MH, Yien CYS
    Sci Rep, 2021 Feb 16;11(1):3864.
    PMID: 33594103 DOI: 10.1038/s41598-021-83434-3
    Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
    Matched MeSH terms: Germination/drug effects*
  15. Ahmed N, Siow KS, Wee MFMR, Patra A
    Sci Rep, 2023 Jan 30;13(1):1675.
    PMID: 36717647 DOI: 10.1038/s41598-023-28811-w
    Cold plasma (low pressure) technology has been effectively used to boost the germination and growth of various crops in recent decades. The durability of these plasma-treated seeds is essential because of the need to store and distribute the seeds at different locations. However, these ageing effects are often not ascertained and reported because germination and related tests are carried out within a short time after the plasma-treatment. This research aims to fill that knowledge gap by subjecting three different types of seeds (and precursors): Bambara groundnuts (water), chilli (oxygen), and papaya (oxygen) to cold plasma-treatment. Common mechanisms found for these diverse seed types and treatment conditions were the physical and chemical changes induced by the physical etching and the cold plasma on the seeds and subsequent oxidation, which promoted germination and growth. The high glass transition temperature of the lignin-cellulose prevented any physical restructuring of the surfaces while maintaining the chemical changes to continue to promote the seeds germination and growth. These changes were monitored over 60 days of ageing using water contact angle (WCA), water uptake, electrical conductivity, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The vacuum effect was also investigated to separate its effect from cold plasma (low pressure). This finding offers a framework for determining how long agricultural seeds that have received plasma treatment can be used. Additionally, there is a need to transfer this research from the lab to the field. Once the impact of plasma treatment on seeds has been estimated, it will be simple to do so.
    Matched MeSH terms: Germination
  16. Islam MA, Shorna MNA, Islam S, Biswas S, Biswas J, Islam S, et al.
    Sci Rep, 2023 Dec 18;13(1):22521.
    PMID: 38110488 DOI: 10.1038/s41598-023-49973-7
    In the modern world, wheat, a vital global cereal and the second most consumed, is vulnerable to climate change impacts. These include erratic rainfall and extreme temperatures, endangering global food security. Research on hydrogen-rich water (HRW) has gained momentum in plant and agricultural sciences due to its diverse functions. This study examined the effects of different HRW treatment durations on wheat, revealing that the 4-h treatment had the highest germination rate, enhancing potential, vigor, and germination indexes. This treatment also boosted relative water content, root and shoot weight, and average lengths. Moreover, the 4-h HRW treatment resulted in the highest chlorophyll and soluble protein concentrations in seeds while reducing cell death. The 4-h and 5-h HRW treatments significantly increased H2O2 levels, with the highest NO detected in both root and shoot after 4-h HRW exposure. Additionally, HRW-treated seeds exhibited increased Zn and Fe concentrations, along with antioxidant enzyme activities (CAT, SOD, APX) in roots and shoots. These findings suggest that HRW treatment could enhance wheat seed germination, growth, and nutrient absorption, thereby increasing agricultural productivity. Molecular analysis indicated significant upregulation of the Dreb1 gene with a 4-h HRW treatment. Thus, it shows promise in addressing climate change effects on wheat production. Therefore, HRW treatment could be a hopeful strategy for enhancing wheat plant drought tolerance, requiring further investigation (field experiments) to validate its impact on plant growth and drought stress mitigation.
    Matched MeSH terms: Germination
  17. Liu JH, Yong XH, Zhen Li, Du SF, Zhang ZW, Meng XF, et al.
    Sains Malaysiana, 2015;44:347-354.
    The effect of maternal mowing on seed traits of an invasive weed, Erigeron annuus, in farmland was discussed by
    comparing mowing plants with intact (no-mowing) plants. The maternal mowing effect resulted in the decrease of seed
    mass, achene size, pappus length and germination percentage and the increase of variation in achene size, pappus length,
    dispersal distance and germination non-uniformity. To some extent, the individuals suffered mowing might accelerate
    the environmental adaptation through the increase of these variations. Our study indicated the mean of mowing in
    farmland will restrain the growth and reproduction of weed E. annuus. However, it also increases the diversity of seeds
    through a more unequal provision to seeds that shares the risk and increases fitness to a wider range of heterogeneity
    of farmland condition.
    Matched MeSH terms: Germination
  18. Ismail B, Syamimi Halimshah, Wan Juliana W, Nornasuha Yusof
    Sains Malaysiana, 2016;45:517-521.
    Pueraria javanica Benth. is one of the most common leguminous cover crop used in oil palm plantations of Malaysia. A study was conducted to determine the allelopathic potential of this plant, using the aqueous extract, sandwich and dish-pack methods, with the seed and leaf (of P. javanica) on three bioassay weed species namely, Eleusine indica, Cyperus iria and Chromolaena odorata. The aqueous extract experiment was conducted using 0 (control), 16.7, 33.3 and 66.7 g/L of the aqueous leaf and seed extracts while the sandwich method was carried out using 10 and 50 mg of each of the donour plant parts. Meanwhile, the dish-pack method was done using four different distances (41, 58, 82 and 92 mm) away from the donour plant. All experiments were replicated five times using the complete randomized design (CRD). The leaf extract exhibited 100% reduction on the fresh weight of E. indica and C. odorata while the seed extract exhibited 100% reduction on all parameters for E. indica and on the fresh weight of C. iria at 66.7 g/L concentration. The seed and leaf at 10 and 50 mg significantly reduced the radicle length of all the bioassay species. The dish-pack experiment also showed a reduction effect on the germination percentage and seedling growth parameters of all the bioassay species. However, the reduction effect was not totally in accordance to the distance from the donor species. More studies need to be conducted to determine the type of reduction mechanism involved in the allelopathic activity especially with respect to molecular and biochemical aspects.
    Matched MeSH terms: Germination
  19. Rahamdad Khan, Ijaz Ahmad Khan
    Sains Malaysiana, 2015;44:25-30.
    In a laboratory trial three chickpea varieties viz, Karak-I, Karak-III and Shenghar were tested against the phytotoxicity of five weed species: Parthenium hysterophorus L., Phragmites australis (Cav.) Trin., Datura alba L., Cyperus rotundus L. and Convolvulus arvensis L.in January 2013. The weed extracts were prepared at the rate of 120 g/L (w/v) after shade dry. The results indicated highly significant inhibitory effect of all the tested weed species on the chickpea varieties. The results also showed that the chickpea variety Karak-III was more susceptible to the phytotoxcity of the tested weed extracts. Among the extract, C. arvensis proved much toxic in term of inhibition of germination by giving only 43.33% germination in comparison with control where 97.50% germination was recorded. On the other hand, the effect of P. australis extract was found a little stimulator by speeding the seed germination in all varieties and giving a low (2.21) mean germination time (MGT) value. From the current results it can be concluded that the infestation of C. arvensis can pollute the soil by accumulating toxic chemicals that leads to the germination failure and growth suppression in chickpea. Therefore, the prevention and removal of C. arvensis in the chickpea growing areas could be recommended. In addition, P. australis must be tested against chickpea weeds (chickpea varieties withstand against its phytotoxcity), so that it can be popularized as bioherbicide in chickpea if it gave promising results in controlling chickpea weeds.
    Matched MeSH terms: Germination
  20. Nasrine S, El-Darier S, El-Taher H
    Sains Malaysiana, 2013;42:1501-1504.
    The aim of the present study was to investigate the potential allelopathic effects of Euphorbia guyoniana (donor species) aqueous extract on germination efficiency of two weeds (Bromus tectorum and Melilotus indica) and one crop species (Triticum aestivum) under laboratory conditions. The germination efficiency, plumule and radicle length of Bromus was completely inhibited at the highest concentration of aqueous extracts of the donor species level (10%). The two recipient species exerted weak measures as affected by the highest concentration level of the donor. This inhibition was markedly obvious in B. tectorum than in M. indica indicating that B. tectorum is more sensitive to the tested donor, while the M. indica is more adapted to the aqueous extract than the B. tectorum.
    Matched MeSH terms: Germination
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links