Displaying all 13 publications

Abstract:
Sort:
  1. Sati ISEE, Parhar I
    Int J Mol Sci, 2021 Dec 17;22(24).
    PMID: 34948346 DOI: 10.3390/ijms222413550
    Glioblastoma (GBM), a grade IV brain tumor, is known for its heterogenicity and its resistance to the current treatment regimen. Over the last few decades, a significant amount of new molecular and genetic findings has been reported regarding factors contributing to GBM's development into a lethal phenotype and its overall poor prognosis. MicroRNA (miRNAs) are small non-coding sequences of RNA that regulate and influence the expression of multiple genes. Many research findings have highlighted the importance of miRNAs in facilitating and controlling normal biological functions, including cell differentiation, proliferation, and apoptosis. Furthermore, miRNAs' ability to initiate and promote cancer development, directly or indirectly, has been shown in many types of cancer. There is a clear association between alteration in miRNAs expression in GBM's ability to escape apoptosis, proliferation, and resistance to treatment. Further, miRNAs regulate the already altered pathways in GBM, including P53, RB, and PI3K-AKT pathways. Furthermore, miRNAs also contribute to autophagy at multiple stages. In this review, we summarize the functions of miRNAs in GBM pathways linked to dysregulation of cell cycle control, apoptosis and resistance to treatment, and the possible use of miRNAs in clinical settings as treatment and prediction biomarkers.
    Matched MeSH terms: Glioblastoma/metabolism*
  2. Hassn Mesrati M, Behrooz AB, Y Abuhamad A, Syahir A
    Cells, 2020 05 16;9(5).
    PMID: 32429463 DOI: 10.3390/cells9051236
    Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
    Matched MeSH terms: Glioblastoma/metabolism*
  3. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al.
    Drug Deliv Transl Res, 2018 10;8(5):1545-1563.
    PMID: 29916012 DOI: 10.1007/s13346-018-0552-2
    Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
    Matched MeSH terms: Glioblastoma/metabolism
  4. Gupta G, Singhvi G, Chellappan DK, Sharma S, Mishra A, Dahiya R, et al.
    Panminerva Med, 2018 Sep;60(3):109-116.
    PMID: 30176701 DOI: 10.23736/S0031-0808.18.03462-6
    Glioblastoma, also known as glioblastoma multiforme, is the most common and worldwide-spread cancer that begins within the brain. Glioblastomas represent 15% of brain tumors. The most common length of survival following diagnosis is 12 to 14 months with less than 3% to 5% of people surviving longer than five years. Without treatment, survival is typically 3 months. Among all receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in glioblastoma. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPAR. There has been interesting preliminary evidence suggesting that diabetic patients receiving PPARγ agonists, a group of anti-diabetics, thiazolidinedione drugs, have an increased median survival for glioblastoma. In this paper, the recent progresses in understanding the potential mechanism of PPARγ in glioblastoma are summarized.
    Matched MeSH terms: Glioblastoma/metabolism
  5. Chen KS, Bridges CR, Lynton Z, Lim JWC, Stringer BW, Rajagopal R, et al.
    J Neurooncol, 2020 Jan;146(1):41-53.
    PMID: 31760595 DOI: 10.1007/s11060-019-03352-3
    INTRODUCTION: Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma.

    METHODS: We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation.

    RESULTS: The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts.

    CONCLUSION: Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.

    Matched MeSH terms: Glioblastoma/metabolism
  6. Ibrahim K, Abdul Murad NA, Harun R, Jamal R
    Int J Mol Med, 2020 Aug;46(2):685-699.
    PMID: 32468002 DOI: 10.3892/ijmm.2020.4619
    Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta‑analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON‑TARGETplus siRNA library on LN18 and U87MG. Tousled‑like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh‑TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.
    Matched MeSH terms: Glioblastoma/metabolism*
  7. Khan MSS, Asif M, Basheer MKA, Kang CW, Al-Suede FS, Ein OC, et al.
    Eur J Pharmacol, 2017 May 15;803:24-38.
    PMID: 28322833 DOI: 10.1016/j.ejphar.2017.03.031
    Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P<0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P<0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P<0.05)], angiogenesis [CD34 (P<0.05)], VEGF, IL17A and cell proliferation [Ki67 (P<0.05)] and caused a significant increase of Bax, caspase and FasL (P<0.05), compared with untreated animals. Additionally, Leptin, LPL (P<0.01), FFA (P<0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.
    Matched MeSH terms: Glioblastoma/metabolism
  8. Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, et al.
    Stem Cell Reports, 2019 04 09;12(4):712-727.
    PMID: 30930246 DOI: 10.1016/j.stemcr.2019.02.012
    Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.
    Matched MeSH terms: Glioblastoma/metabolism*
  9. Vasaikar S, Tsipras G, Landázuri N, Costa H, Wilhelmi V, Scicluna P, et al.
    BMC Cancer, 2018 02 06;18(1):154.
    PMID: 29409474 DOI: 10.1186/s12885-018-4012-7
    BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.

    METHODS: Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.

    RESULTS: By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.

    CONCLUSIONS: ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

    Matched MeSH terms: Glioblastoma/metabolism
  10. Khan MS, Majid AM, Iqbal MA, Majid AS, Al-Mansoub M, Haque RS
    Eur J Pharm Sci, 2016 Oct 10;93:304-18.
    PMID: 27552907 DOI: 10.1016/j.ejps.2016.08.032
    Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3μg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.
    Matched MeSH terms: Glioblastoma/metabolism*
  11. Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, et al.
    J Neurooncol, 2018 Jul;138(3):509-518.
    PMID: 29564746 DOI: 10.1007/s11060-018-2838-0
    Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
    Matched MeSH terms: Glioblastoma/metabolism
  12. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Glioblastoma/metabolism
  13. Rashid NN, Yusof R, Watson RJ
    Anticancer Res, 2014 Nov;34(11):6557-63.
    PMID: 25368258
    It is well-established that HPV E7 proteins, encoded by human papillomavirus (HPV) genes, frequently associated with cervical cancers bind avidly to the retinoblastoma (RB) family of pocket proteins and disrupt their association with members of the E2F transcription factor family. Our previous study showed that the repressive p130-dimerization partner, RB-like, E2F and multi-vulval class (DREAM) complex was disrupted by HPV16 E7 proteins in order to maintain the viral replication in CaSki cells. However, we would like to address whether the activator B-myb-DREAM complex is critical in regulating the replication and mitosis phase since our previous study showed increased B-myb-DREAM expression in HPV-transformed cell lines when compared to control cells.
    Matched MeSH terms: Glioblastoma/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links