OBJECTIVES: To assess the effects of mormodica charantia for type 2 diabetes mellitus.
SEARCH METHODS: Several electronic databases were searched, among these were The Cochrane Library (Issue 1, 2012), MEDLINE, EMBASE, CINAHL, SIGLE and LILACS (all up to February 2012), combined with handsearches. No language restriction was used.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared momordica charantia with placebo or a control intervention, with or without pharmacological or non-pharmacological interventions.
DATA COLLECTION AND ANALYSIS: Two authors independently extracted data. Risk of bias of the trials was evaluated using the parameters of randomisation, allocation concealment, blinding, completeness of outcome data, selective reporting and other potential sources of bias. A meta-analysis was not performed given the quality of data and the variability of preparations of momordica charantia used in the interventions (no similar preparation was tested twice).
MAIN RESULTS: Four randomised controlled trials with up to three months duration and investigating 479 participants met the inclusion criteria. Risk of bias of these trials (only two studies were published as a full peer-reviewed publication) was generally high. Two RCTs compared the effects of preparations from different parts of the momordica charantia plant with placebo on glycaemic control in type 2 diabetes mellitus. There was no statistically significant difference in the glycaemic control with momordica charantia preparations compared to placebo. When momordica charantia was compared to metformin or glibenclamide, there was also no significant change in reliable parameters of glycaemic control. No serious adverse effects were reported in any trial. No trial investigated death from any cause, morbidity, health-related quality of life or costs.
AUTHORS' CONCLUSIONS: There is insufficient evidence on the effects of momordica charantia for type 2 diabetes mellitus. Further studies are therefore required to address the issues of standardization and the quality control of preparations. For medical nutritional therapy, further observational trials evaluating the effects of momordica charantia are needed before RCTs are established to guide any recommendations in clinical practice.
METHODS: Two reviewers searched MEDLINE for studies of ≥12 weeks duration in adults with type 2 diabetes. The key search word was "gliclazide", filtered with "randomized controlled trial", "human" and "19+ years". Differences were explored in mean change in glycated hemoglobin (HbA(1c)) from baseline (primary outcome) and risk of hypoglycemia (secondary outcome) between gliclazide and other oral insulinotropic agents; and other sulfonylureas.
RESULTS: Nine out of 181 references reported primary outcomes, of which 7 reported secondary outcomes. Gliclazide lowered HbA1c more than other oral insulinotropic agents, with a weighted mean difference of -0.11% (95%, CI -0.19 to -0.03%, P=0.008, I(2)=60%), though not more than other sulfonylureas (-0.12%; 95%, CI -0.25 to 0.01%, P=0.07, I(2)=77%). Risk of hypoglycemia with gliclazide was not different to other insulinotropic agents (RR 0.85; 95%, CI 0.66 to 1.09, P=0.20, I(2)=61%) but significantly lower than other sulfonylureas (RR 0.47; 95%, CI 0.27 to 0.79, P=0.004, I(2)=0%).
CONCLUSION: Compared with other oral insulinotropic agents, gliclazide significantly reduced HbA1c with no difference regarding hypoglycemia risk. Compared with other sulfonylureas, HbA1c reduction with gliclazide was not significantly different, but hypoglycemia risk was significantly lower.
OBJECTIVE: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available.
METHODS: The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient.
RESULTS: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported.
CONCLUSIONS: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.