Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Abd-Aziz N, Lee MF, Ong SK, Poh CL
    Virology, 2024 Jan;589:109941.
    PMID: 37984152 DOI: 10.1016/j.virol.2023.109941
    The hand, food, and mouth disease (HFMD) is primarily caused by Enterovirus A71 (EV-A71). EV-A71 outbreaks in the Asia Pacific have been associated with severe neurological disease and high fatalities. Currently, there are no FDA-approved antivirals for the treatment of EV-A71 infections. In this study, the SP81 peptide, derived from the VP1 capsid protein of EV-A71 was shown to be a promising antiviral candidate for the treatment of EV-A71 infections. SP81 peptide was non-toxic to RD cells up to 45 μM, with a half-maximal cytotoxic concentration (CC50) of 90.32 μM. SP81 peptide exerted antiviral effects during the pre- and post-infection stages with 50% inhibitory concentrations (IC50) of 4.529 μM and 1.192 μM, respectively. Direct virus inactivation of EV-A71 by the SP81 peptide was also observed with an IC50 of 8.076 μM. Additionally, the SP81 peptide exhibited direct virus inactivation of EV-A71 at 95% upon the addition of the SP81 peptide within 5 min. This study showed that the SP81 peptide exhibited significant inhibition of EV-A71 and could serve as a promising antiviral agent for further clinical development against EV-A71 infections.
    Matched MeSH terms: Hand, Foot and Mouth Disease*
  2. Rajamoorthy Y, Taib NM, Harapan H, Wagner AL, Munusamy S
    PLoS One, 2023;18(6):e0286924.
    PMID: 37307254 DOI: 10.1371/journal.pone.0286924
    Hand foot and mouth disease (HFMD) is a notifiable viral disease in Malaysia, and is transmitted primarily among young children. Although vaccines for enteroviruses 71 (EV-71) were approved in China against HFMD, the availability and the acceptance of the vaccine in the Malaysia are unknown. This study investigated and ascertained the determinants of willingness-to-pay (WTP) for HFMD vaccination in Selangor Malaysia. This study adopted a cross-sectional, contingent valuation method involving 390 parents of young children aged six and below. The double bounded dichotomous choice (DBDC) approach was employed to assess the WTP for HFMD vaccine among respondents. A bivariate probit model was used to assess the key determinants of WTP for HFMD vaccine, while the mean WTP was measured using the Krinsky and Robb procedure. We found that 279 (71.5%) of parents were willing to pay for the HFMD vaccination. The estimated single bounded mean WTP was MYR460.23 (equivalent to US$ 102.17) for two doses of HFMD vaccination. The double bounded analysis revealed that the vaccine's price, poor education background and lower income were the key factors that significantly affected the WTP, with the estimated mean WTP being MYR394.00 (US$ 87.47). In conclusion, most Malaysian parents are willing to pay for the HFMD vaccination. The estimated WTP identifies the optimal price point for HFMD vaccination in Malaysia. Furthermore, the government should focus on an awareness programme for the HFMD vaccination among parents who have lower income or education level.
    Matched MeSH terms: Hand, Foot and Mouth Disease*
  3. Gunaseelan S, Ariffin MZ, Khanna S, Ooi MH, Perera D, Chu JJH, et al.
    Nat Commun, 2022 Feb 16;13(1):890.
    PMID: 35173169 DOI: 10.1038/s41467-022-28533-z
    Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.
    Matched MeSH terms: Hand, Foot and Mouth Disease/pathology*; Hand, Foot and Mouth Disease/virology
  4. Lalani S, Gew LT, Poh CL
    Peptides, 2021 Feb;136:170443.
    PMID: 33171280 DOI: 10.1016/j.peptides.2020.170443
    The emergence of new and resistant viruses is a serious global burden. Conventional antiviral therapy with small molecules has led to the development of resistant mutants. In the case of hand, foot and mouth disease (HFMD), the absence of a US-FDA approved vaccine calls for urgent need to develop an antiviral that could serve as a safe, potent and robust therapy against the neurovirulent Enterovirus A71 (EV-A71). Natural peptides such as lactoferrin, melittin and synthetic peptides such as SP40, RGDS and LVLQTM have been studied against EV-A71 and have shown promising results as potent antivirals in pre-clinical studies. Peptides are considered safe, efficacious and pose fewer chances of resistance. Poor pharmacokinetic features of peptides can be overcome by the use of chemical modifications to improve in vivo delivery particularly by oral route. The use of nanotechnology can remarkably assist in the oral delivery of peptides and enhance stability in vivo. This can greatly increase patient compliance and make it more attractive as antiviral therapy.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  5. Mustafa S, Abd-Aziz N, Saw WT, Liew SY, Yusoff K, Shafee N
    Vaccines (Basel), 2020 Dec 07;8(4).
    PMID: 33297428 DOI: 10.3390/vaccines8040742
    Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198-297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198-297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198-297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198-297 protein as EV71 vaccine.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  6. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Hand, Foot and Mouth Disease/diagnosis; Hand, Foot and Mouth Disease/virology*
  7. Wang Y, Li Y, Yang Y, Peng C, Fu X, Gu X, et al.
    Exp Ther Med, 2020 Jul;20(1):543-549.
    PMID: 32537012 DOI: 10.3892/etm.2020.8728
    The aim of the present study was to analyze the sequence of the VP1 gene in enterovirus 71 (EV71) isolates and to explore their genetic evolution, so as to provide a scientific basis for the clinical prevention and treatment of hand, foot and mouth disease. The fecal samples of 590 patients with suspected hand, foot and mouth disease treated at Yan'an Hospital (Kunming, China) between January 2015 and December 2016 were collected and EV71 nucleic acid was detected by fluorescence PCR. The viral RNA of EV71-positive samples was extracted, the VP1 gene was amplified by PCR and the products were sequenced. The VP1 gene sequence was analyzed using DNAMAN and MEGA (version 4.0) software and homologous modeling was performed using Pymol software. A total of 50 EV71-positive samples were identified and the detection rate was 8.47% (50/590 cases). All of the 50 EV71 strains were of the C4 subtype. The genetic distance between the strains detected in the present study and EV71 strains detected in Beijing, Anhui and Malaysia was 0.01-0.03, while that between the strains detected in the present study and Australian strains was 2.11. Homologous modeling indicated that the amino acid sequence of the VP1 gene of the detected strains had a H144Y mutation. There was no significant genetic variation in the EV71 strain within the 2-year period. In conclusion, the EV71 strains detected in the present study was similar to that detected in Beijing, Anhui and Malaysia but different to that from Australia. A point mutation was present in the amino acid sequence of the VP1 gene.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  8. Saxena VK, Pawar SD, Qureshi THIH, Surve P, Yadav P, Nabi F, et al.
    Virusdisease, 2020 Mar;31(1):56-60.
    PMID: 32206699 DOI: 10.1007/s13337-020-00567-1
    Hand, Foot and Mouth Disease (HFMD) is caused by multiple Enterovirus (EV) serotypes mainly coxsackievirus A6 (CV-A6), coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV-A71). Recurrent HFMD infections are rarely reported. An unusual rise in HFMD cases was reported in Mumbai during May-June 2018. Stool and throat swab specimens were referred from seven children from two hospitals for laboratory diagnosis. The age group of cases ranged from 9 months to 5 years with median age 13 months. Out of seven cases, three were males and four females. One 13-month-old female case was reported twice within 21 days. Stool, throat swab specimens were tested by pan enterovirus RT-PCR and also by virus isolation using human rhabdomyosarcoma cell line for detection of Enteroviruses. Out of seven HFMD cases, CV-A6 and CV-A16 viruses were isolated from five and two cases respectively. The phylogenetic analysis of CV-A6 viruses showed their similarity with CV-A6 viruses from Finland and China, whereas the two CV-A16 isolates showed similarity with those from Japan, France, China, Sarawak and Thailand. For the recurrent HFMD case, CV-A6 and CV-A16 were isolated from the stool specimens collected during the first and second episodes, respectively. There are no reports of isolation and molecular characterization of CV-A6 and CV-A16 viruses from recurrent HFMD cases. The present study reports molecular characterization of two Enterovirus serotypes CV-A6 and CV-A16 from a recurrent HFMD case, highlighting need of virological and molecular surveillance of HFMD.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  9. Chiu ML, Luo ST, Chen YY, Chung WY, Duong V, Dussart P, et al.
    Vaccine, 2020 01 03;38(1):1-9.
    PMID: 31679864 DOI: 10.1016/j.vaccine.2019.09.111
    Enteroviruses (EV), the major pathogens of hand, foot, and mouth disease (HFMD) and herpangina, affect millions of children each year. Most human enteroviruses cause self-limited infections except polioviruses, enterovirus A71 (EV-A71), enterovirus D68 (EV-D68), and several echoviruses (Echo) and coxsackieviruses (CV). Especially, EV-A71 has repeatedly caused large-scale outbreaks in the Asia-Pacific region since 1997. Some Asian countries have experienced cyclical outbreaks of severe EV-A71 infections and initiated development of EV-A71 vaccines. Five EV-A71 vaccine candidates have been clinically evaluated and three of them were approved for marketing in China. However, none of the China-approved products seek marketing approval in other countries. This situation supports a role for collaboration among Asian countries to facilitate clinical trials and licensure of EV-A71 vaccines. Additionally, enterovirus D68 outbreaks have been reported in the US and Taiwan currently and caused severe complications and deaths. Hence, an Asia-Pacific Network for Enterovirus Surveillance (APNES) has been established to estimate disease burden, understand virus evolution, and facilitate vaccine development through harmonizing laboratory diagnosis and data collection. Founded in 2017, the APNES is comprised of internationally recognized experts in the field of enterovirus in Asian countries working to raise awareness of this potentially fatal and debilitating disease. This article demonstrated the summaries of the first expert meeting, 2017 International Workshop on Enterovirus Surveillance and Vaccine Development, held by APNES in Taipei, Taiwan, March 2017.
    Matched MeSH terms: Hand, Foot and Mouth Disease/diagnosis; Hand, Foot and Mouth Disease/epidemiology*; Hand, Foot and Mouth Disease/prevention & control
  10. Tengku Jamaluddin TZM, Mohamed NA, Mohd Rani MD, Ismail Z, Ramli S, Faroque H, et al.
    Glob Pediatr Health, 2020;7:2333794X20976369.
    PMID: 33335950 DOI: 10.1177/2333794X20976369
    Background. Pre-school children are at a higher risk to acquire infectious diseases such as hand, foot and mouth disease due to their immature immune system. Good hand hygiene prevents transmission of infectious diseases. This study aimed to determine the knowledge and practices of hand hygiene among pre-schoolers. Methods. In this prospective, multi-center study, the pre-schools were selected according to the selection criteria. A questionnaire consisting of socio-demographics, knowledge and practices of hand hygiene were administered via face-to-face interview during the pre- and post-intervention period. A total of 435 pre-schoolers aged 5 and 6 years old from 2 pre-schools within Klang Valley, School P (test group) and School C (control group) were involved in this study. The test group was provided with comprehensive hand hygiene education including video on proper handwashing technique during the 2 months intervention period, whereas the control group did not receive any form of intervention. The data were statistically analyzed using descriptive analysis and independent t-test. Results. Majority of pre-schoolers gained knowledge of handwashing from their parents. However, only 63% demonstrated good handwashing technique. Test group were significantly better (P hand hygiene routine score. Conclusion. A comprehensive hand hygiene education program should include proper handwashing facilities, resources, and awareness of the care-givers in instilling and sustaining good hand hygiene behavior.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  11. Huang K, Zhang Y, Han Z, Zhou X, Song Y, Wang D, et al.
    PMID: 33102246 DOI: 10.3389/fcimb.2020.00475
    The subgenotype B5 of EV-A71 is a widely circulating subgenotype that frequently spreads across the globe. Several outbreaks have occurred in nations, such as Malaysia, Thailand, Vietnam, and Japan. Appearing first in Taiwan, China, the subgenotype has been frequently reported in mainland of China even though no outbreaks have been reported so far. The current study reconstructed the migration of the B5 subgenotype of EV-A71 in China via phylogeographical analysis. Furthermore, we investigated its population dynamics in order to draw more credible inferences. Following a dataset cleanup of B5 subgenotype of EV-A71, we detected earlier B5 subgenotypes of EV-A71 sequences that had been circulating in Malaysia and Singapore since the year 2000, which was before the 2003 outbreak that occurred in Sarawak. The Bayesian inference indicated that the most recent common ancestor of B5 subgenotype EV-A71 appeared in September, 1994 (1994.75). With respect to the overall prevalence, geographical reconstruction revealed that the B5 subgenotype EV-A71 originated singly from single-source cluster and subsequently developed several active lineages. Based on a large amount of data that was accumulated, we conclude that the appearance of the B5 subgenotype of EV-A71 in mainland of China was mainly due to multiple migrations from different origins.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  12. Liou AT, Liao CC, Chou SF, Chang YS, Chang CS, Shih C
    J Biomed Sci, 2019 Nov 11;26(1):93.
    PMID: 31711481 DOI: 10.1186/s12929-019-0585-y
    BACKGROUND: Enterovirus 71 (EV71 or EV-A71) was first identified in California about half a century ago. In recent years, outbreaks of EV-A71 were prevalent worldwide, including Taiwan, Malaysia, Singapore, Japan, and China. Between 2008 and 2011, China alone reported 1894 deaths associated with EV-A71 infection. In mild cases, EV-A71 can cause herpangina and hand-foot-and-mouth disease (HFMD). However, in severe cases, it could cause neurological disorders, including meningitis and encephalitis. Cardiopulmonary failure is common among hospitalized children with EV-A71 infection. No effective FDA-approved therapeutics against EV-A71 are clinically available.

    METHODS: We report the establishment of an immunocompetent wild type strain 129 (wt-129) mouse model, which can be cross-species infected with human EV-A71 clinical isolates via an intraperitoneal route.

    RESULTS: One intriguing disease phenotype of this new model is the development of characteristic "White-Jade" patches in the muscle, which lost sporadically the normal pink color of uninfected muscle. Viral VP1 protein and massive leukocyte infiltration were detected in muscles with or without white-jades. We demonstrated further that hypoxia is a general phenomenon associated with white-jades in both immunocompetent and immunodeficient mouse models. Therefore, hypoxia appears to be a feature intrinsic to EV-A71 infection, irrespective of its host's immunogenetic background. To date, no effective treatment for EV-A71 is available. Here, using this new wt-129 mouse model, we showed that timely treatment with compound R837 (a TLR7 immune modulator) via oral or intraperitoneal routes, rescued the hypoxia, limb paralysis, and death at a high therapeutic efficacy.

    CONCLUSIONS: In this new immunocompetent mouse 129 model, we observed an unexpected white-jade phenotype and its associated hypoxia. The successful treatment with TLR7 immune modulators via an oral route, provide us a new research direction for EV-A71 basic science and translational research. It remains an open issue whether R837 or its related compounds, will be a promising drug candidate in clinical trials in EV-A71 endemic or epidemic areas in the future.

    Matched MeSH terms: Hand, Foot and Mouth Disease
  13. Aw-Yong KL, NikNadia NMN, Tan CW, Sam IC, Chan YF
    Rev Med Virol, 2019 09;29(5):e2073.
    PMID: 31369184 DOI: 10.1002/rmv.2073
    Enterovirus A71 (EV-A71) from the Picornaviridae family is an important emerging pathogen causing hand, foot, and mouth disease (HFMD) outbreaks worldwide. EV-A71 also caused fatal neurological complications in young children especially in Asia. On the basis of seroepidemiological studies from many Asian countries, EV-A71 infection is very common. Children of very young age are particularly vulnerable. Large-scale epidemics that occur every 3 to 4 years are associated with accumulation of an immunologically naive younger population. Capsid proteins especially VP1 with the presence of major B- and T-cell epitopes are the most antigenic proteins. The nonstructural proteins mainly contribute to T-cell epitopes that induce cross-reactive immune responses against other enteroviruses. Dominant epitopes and their neutralization magnitudes differ in mice, rabbits, and humans. Neutralizing antibody is sufficient for immune protection, but poorer cellular immunity may lead to severe neurological complications and deaths. Some chemokines/cytokines are consistently found in severely ill patients, for example, IL-6, IL-10, IL-17A, MCP-1, IL-8, MIG, IP-10, IFN-γ, and G-CSF. An increase in white cell counts is a risk factor for severe HFMD. Recent clinical trials on EV-A71 inactivated vaccine showed >90% efficacy and a robust neutralization response that was protective, indicating neutralizing antibody correlates for protection. No protection against other enteroviruses was observed. A comprehensive understanding of the immune responses to EV-A71 infection will benefit the development of diagnostic tools, potential therapeutics, and subunit vaccine candidates. Future development of a multivalent enterovirus vaccine will require knowledge of correlates of protection, understanding of cross-protection and memory T-cell responses among enteroviruses.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  14. Roberts R, Yee PTI, Mujawar S, Lahiri C, Poh CL, Gatherer D
    Sci Rep, 2019 04 01;9(1):5427.
    PMID: 30931960 DOI: 10.1038/s41598-019-41662-8
    Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
    Matched MeSH terms: Hand, Foot and Mouth Disease/virology
  15. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Hand, Foot and Mouth Disease/diagnosis; Hand, Foot and Mouth Disease/immunology; Hand, Foot and Mouth Disease/prevention & control*; Hand, Foot and Mouth Disease/virology
  16. Anasir MI, Poh CL
    Int J Mol Sci, 2019 Mar 13;20(6).
    PMID: 30871133 DOI: 10.3390/ijms20061256
    Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.
    Matched MeSH terms: Hand, Foot and Mouth Disease/immunology*
  17. Manisya Zauri Abdul Wahid, Tengku Rogayah T. Abd. Rashid, Hariyati Md. Ali, Hamadah Mohd Shafiff, Mohd. Shamsul Samsuddin, Syarifah Nur Aisyatun Syed Mohd Salleh, et al.
    MyJurnal
    Introduction:Echoviruses are Enteroviruses (HEVs) that infect millions of people annually worldwide, primarily paediatrics. These viruses are frequently associated with outbreaks and sporadic cases of viral meningitis, enceph-alitis, paralysis, myocarditis, severe systemic infections; and hand-foot-mouth disease. This study is a retrospective study to identify Echovirus serotypes circulating in Malaysia from January 2014 to June 2019, and their roles in outbreak prediction. This study investigated the Echovirus serotypes circulating in Malaysia from January 2014 to June 2019. Methods: A total of 13,855 inpatient samples consisting respiratory secretion, stool, tissue and body fluid from around the country were received by the Virology Unit, Institute for Medical Research between January 2014 and June 2019. The presence of HEV’s RNA was detected by qPCR. The identified positive sample was further isolated by cell culture and identified by Immunofluorescence Assay (IFA). The IFA positive samples were subjected to amplification of partial VP4 gene by RT-PCR, and proceeded to Sanger sequencing for phylogenetic analysis by using ChromasPro and MEGA Software. The sequence generated were analysed by BLAST to confirm the sequence serotypes generated. Results: Echovirus genome was detected in 0.35% (37/10,681) of the patients. The circulating Echovirus subtypes in Malaysia between January 2014 and June 2019 were Echo-11 (43.2%; 16/37), followed by Echo-6 (16.2%; 6/37); 8.1% (3/37) of Echo-7 and Echo-13, respectively. Meanwhile, other types of Echoviruses (24.3%; 9/37) such as Echo 3-5, Echo-14, Echo-16, Echo-18, Echo-25 and Echo-30 were also detected in this study. Conclusion: In this study, it has been found that Echovirus 11 serotype is the most predominant Echovirus serotype circulating in Malaysia between January 2014 and June 2019. It has been reported to cause severe diseases, such as aseptic meningitis. Therefore, the identification of circulating serotypes of Echovirus is critical to predict the Echovi-rus outbreak and to reduce the risk of developing severe disease in Malaysia.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  18. Chen L, Yao XJ, Xu SJ, Yang H, Wu CL, Lu J, et al.
    Arch Virol, 2018 Nov 29.
    PMID: 30498962 DOI: 10.1007/s00705-018-4112-3
    Coxsackievirus A16 (CV-A16) of the genotypes B1a and B1b have co-circulated in mainland China in the past decades. From 2013 to 2017, a total of 3,008 specimens from 3,008 patients with mild hand, foot, and mouth disease were collected in the present study. Viral RNA was tested for CV-A16 by a real-time RT-PCR method, and complete VP1 sequences and full-length genome sequences of CV-A16 strains from this study were determined by RT-PCR and sequencing. Sequences were analyzed using a series of bioinformatics programs. The detection rate for CV-A16 was 4.1%, 25.9%, 10.6%, 28.1% and 12.9% in 2013, 2014, 2015, 2016 and 2017, respectively. Overall, the detection rate for CV-A16 was 16.5% (497/3008) in this 5-year period in Shenzhen, China. One hundred forty-two (142/155, 91.6%) of the 155 genotype B1 strains in the study belonged to subgenotype B1b, and 13 (13/155, 8.4%) strains belonged to subgenotype B1a. Two strains (CVA16/Shenzhen174/CHN/2017 and CVA16/Shenzhen189/CHN/2017) could not be assigned to a known genotype. Phylogenetic analysis of these two strains and other Chinese CV-A16 strains indicated that these two CV-A16 strains clustered independently in a novel clade whose members differed by 8.4%-11.8%, 8.4%-12.1%, and 14.6%-14.8% in their nucleotide sequences from those of Chinese B1a, B1b, and genotype D strains, respectively. Phylogenetic analysis of global CV-A16 strains further indicated that the two novel CV-A16 strains from this study grouped in a previously uncharacterized clade, which was designated as the subgenogroup B3 in present study. Meanwhile, phylogenetic reconstruction revealed two other new genotypes, B1d and B4, which included a Malaysian strain and two American strains, respectively. The complete genome sequences of the two novel CV-A16 strains showed the highest nucleotide sequence identity of 92.3% to the Malaysian strain PM-15765-00 from 2000. Comparative analysis of amino acid sequences of the two novel CV-A16 strains and their relatives suggested that variations in the nonstructural proteins may play an important role in the evolution of modern CV-A16.
    Matched MeSH terms: Hand, Foot and Mouth Disease
  19. Takahashi S, Metcalf CJE, Arima Y, Fujimoto T, Shimizu H, Rogier van Doorn H, et al.
    J R Soc Interface, 2018 09 12;15(146).
    PMID: 30209044 DOI: 10.1098/rsif.2018.0507
    Outbreaks of hand, foot and mouth disease have been documented in Japan since 1963. This disease is primarily caused by the two closely related serotypes of Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16). Here, we analyse Japanese virologic and syndromic surveillance time-series data from 1982 to 2015. As in some other countries in the Asia Pacific region, EV-A71 in Japan has a 3 year cyclical component, whereas CV-A16 is predominantly annual. We observe empirical signatures of an inhibitory interaction between the serotypes; virologic lines of evidence suggest they may indeed interact immunologically. We fit the time series to mechanistic epidemiological models: as a first-order effect, we find the data consistent with single-serotype susceptible-infected-recovered dynamics. We then extend the modelling to incorporate an inhibitory interaction between serotypes. Our results suggest the existence of a transient cross-protection and possible asymmetry in its strength such that CV-A16 serves as a stronger forcing on EV-A71. Allowing for asymmetry yields accurate out-of-sample predictions and the directionality of this effect is consistent with the virologic literature. Confirmation of these hypothesized interactions would have important implications for understanding enterovirus epidemiology and informing vaccine development. Our results highlight the general implication that even subtle interactions could have qualitative impacts on epidemic dynamics and predictability.
    Matched MeSH terms: Hand, Foot and Mouth Disease/epidemiology*; Hand, Foot and Mouth Disease/virology*
  20. Mandary MB, Poh CL
    Viruses, 2018 06 12;10(6).
    PMID: 29895721 DOI: 10.3390/v10060320
    Enterovirus 71 (EV-A71) is a major etiological agent of hand, foot and mouth disease (HFMD) that mainly affects young children less than five years old. The onset of severe HFMD is due to neurological complications bringing about acute flaccid paralysis and pulmonary oedema. In this review, we address how genetic events such as recombination and spontaneous mutations could change the genomic organization of EV-A71, leading to an impact on viral virulence. An understanding of the recombination mechanism of the poliovirus and non-polio enteroviruses will provide further evidence of the emergence of novel strains responsible for fatal HFMD outbreaks. We aim to see if the virulence of EV-A71 is contributed solely by the presence of fatal strains or is due to the co-operation of quasispecies within a viral population. The phenomenon of quasispecies within the poliovirus is discussed to reflect viral fitness, virulence and its implications for EV-A71. Ultimately, this review gives an insight into the evolution patterns of EV-A71 by looking into its recombination history and how spontaneous mutations would affect its virulence.
    Matched MeSH terms: Hand, Foot and Mouth Disease/pathology; Hand, Foot and Mouth Disease/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links