Displaying all 13 publications

Abstract:
Sort:
  1. Sahid I, Razlin W, Zaabar W
    Bull Environ Contam Toxicol, 1993 Oct;51(4):605-11.
    PMID: 8400666
    Matched MeSH terms: Herbicides/pharmacology*
  2. Anwar MP, Juraimi AS, Mohamed MT, Uddin MK, Samedani B, Puteh A, et al.
    ScientificWorldJournal, 2013;2013:916408.
    PMID: 24223513 DOI: 10.1155/2013/916408
    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point.
    Matched MeSH terms: Herbicides/pharmacology*
  3. Roslan AA, Tayyab S
    Biochem Mol Biol Educ, 2019 03;47(2):156-160.
    PMID: 30629781 DOI: 10.1002/bmb.21207
    A laboratory exercise on the interaction between the herbicide pendimethalin (PM) and goat serum albumin (GSA), a carrier protein present in mammalian blood circulation, is described. Fluorescence spectroscopy was used to study the binding reaction between PM and GSA. Titration of a constant amount of the protein (GSA) with increasing ligand (PM) concentrations produced a consecutive decrease in the protein's fluorescence. Treatment of the fluorescence quenching data according to the Stern-Volmer equation yielded the values of the Stern-Volmer constant (Ksv ) and bimolecular quenching rate constant (kq ), whereas values of the binding constant (Ka ) and number of binding sites (n) were obtained from the double logarithmic plot. This experiment provides an exciting opportunity for undergraduate students to independently perform ligand binding studies with a protein, in addition to providing the means for the determination of their binding parameters. © 2019 International Union of Biochemistry and Molecular Biology, 47(2): 156-160, 2019.
    Matched MeSH terms: Herbicides/pharmacology
  4. Nahi A, Othman R, Omar D, Ebrahimi M
    Pol J Microbiol, 2016 Aug 26;65(3):377-382.
    PMID: 29334074 DOI: 10.5604/17331331.1215618
    A study was carried out to determine the effects of paraquat, pretilachlor and 2, 4-D on growth and nitrogen fixing activity of Stenotrophomonas maltophilia (Sb16) and pH of Jensen's N-free medium. The growth of Sb16 and pH of medium were significantly reduced with full (X) and double (2X) doses of tested herbicides, but nitrogen fixing activity was decreased by 2X doses. The nitrogenase activity had the highest value in samples treated with 1/2X of 2, 4-D on fifth incubation day, but 2X of 2, 4-D had the most adverse effect. An inhibition in the growth and nitrogenase activity was recovered on the last days of incubation.
    Matched MeSH terms: Herbicides/pharmacology*
  5. Abdullah HSTSH, Chia PW, Omar D, Chuah TS
    Sci Rep, 2021 07 09;11(1):14227.
    PMID: 34244589 DOI: 10.1038/s41598-021-93662-2
    Herbicide resistance is a worldwide problem in weed control. This prompts researchers to look for new modes of action to slow down the evolution of herbicide-resistant weeds. This research aims to determine the herbicidal action of thiazolo[3,2-a]pyrimidines derivatives, which are well known as antihypertensive drugs. The phytotoxic effects of ten compounds were investigated using leaf disc discoloration test and seed germination bioassay. At concentrations of 125 to 250 mg/L, the 5-(3-Fluoro-phenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (c) was highly active against Oldenlandia verticillata and Eleusine indica. At application rates of 1.25 to 2.5 kg ai/ha, formulated c demonstrated selective post-emergence and pre-emergence herbicidal activity against O. verticillata, E. indica and Cyperus iria. In the crop tolerance test, formulated c outperformed the commercial herbicide diuron, with aerobic Oryza sativa being the most tolerant, followed by Zea mays, and Brassica rapa. The addition of calcium chloride partially nullified compound c's inhibitory effects on weed shoot growth, indicating that it has potential as a calcium channel blocker. Compound c acted by triggering electrolyte leakage without affecting photosystem II. These findings imply that c could be explored further as a template for developing new herbicides with novel modes of action.
    Matched MeSH terms: Herbicides/pharmacology*
  6. Borikhonov B, Berdimurodov E, Kholikov T, Nik WBW, Katin KP, Demir M, et al.
    J Mol Model, 2024 Oct 02;30(11):359.
    PMID: 39356293 DOI: 10.1007/s00894-024-06157-y
    CONTEXT: This study addresses the development of sustainable pyridinium ionic liquids (ILs) because of their potential applications in agriculture and pharmaceuticals. Pyridinium-based ILs are known for their low melting points, high thermal stability, and moderate solvation properties. We synthesized three novel pyridinium-based ILs: 1-(2-(isopentyloxy)-2-oxoethyl)pyridin-1-ium chloride, 1-(2-(hexyloxy)-2-oxoethyl)pyridin-1-ium chloride, and 1-(2-(benzyloxy)-2-oxoethyl)pyridin-1-ium chloride. The biological activities of these compounds were evaluated through plant growth promotion, herbicidal, and insecticidal assays. Our results show that the benzyloxy derivative significantly enhances wheat and cucumber growth, whereas the isopentyloxy compound has potent herbicidal effects. Computational methods, including DFT calculations and molecular docking, were applied to understand the structure‒activity relationships (SARs) and mechanisms of action.

    METHODS: The computational techniques involved dispersion-corrected density functional theory (DFT) with the B3LYP functional and the 6-311G** basis set. Grimme's D3 corrections were included to account for dispersion interactions. The calculations were performed via GAMESS-US software. Quantum descriptors of reactivity, such as ionization potential, electron affinity, chemical potential, and electrophilicity index, were derived from the HOMO and LUMO energies. Molecular docking studies were conducted via the CB-Dock server via AutoDock Vina software to predict binding affinities to cancer-related proteins. Petra/Osiris/Molinspiration (POM) analysis was used to predict the drug likeness and other pharmaceutical properties of the synthesized ILs.

    Matched MeSH terms: Herbicides/pharmacology
  7. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Idris AS
    Gene, 2015 Feb 10;556(2):170-81.
    PMID: 25479011 DOI: 10.1016/j.gene.2014.11.055
    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.
    Matched MeSH terms: Herbicides/pharmacology
  8. Izawati AM, Parveez GK, Masani MY
    Methods Mol Biol, 2012;847:177-88.
    PMID: 22351008 DOI: 10.1007/978-1-61779-558-9_15
    Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants.
    Matched MeSH terms: Herbicides/pharmacology
  9. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RN
    Pest Manag Sci, 2013 Jan;69(1):104-11.
    PMID: 22865686 DOI: 10.1002/ps.3371
    Pesticides are developed with carriers to improve their physicochemical properties and, accordingly, the bioefficacy of the applied formulation. For foliar-applied herbicide, generally less than 0.1% of the active ingredient reaching the target site could reduce pesticide performance. Recently, a carrier of nanoemulsion consisting of oil, surfactant and water, with a particle size of less than 200 nm, has been shown to enhance drug permeability for skin penetration in pharmaceutical delivery systems. In the present work, the aim was to formulate a water-soluble herbicide, glyphosate isopropylamine (IPA), using a green nanoemulsion system for a biological activity study against the weeds creeping foxglove, slender button weed and buffalo grass.
    Matched MeSH terms: Herbicides/pharmacology*
  10. Chen J, Jiang C, Huang H, Wei S, Huang Z, Wang H, et al.
    Pestic Biochem Physiol, 2017 Nov;143:201-206.
    PMID: 29183593 DOI: 10.1016/j.pestbp.2017.09.012
    The evolution of weed-resistant species threatens the sustainable use of glyphosate, which is the most important herbicide widely used in agriculture worldwide. Moreover, the high glyphosate resistance (>180-fold based on LD50) of Eleusine indica found in Malaysia, which carries a double mutation in its 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), made the control of this species more difficult. By contrast, the same species carrying the same double mutation in EPSPS (T102I+P106S) but found in China only shows a resistance level of not more than 14-fold based on GR50. The resistance level of this population is four times higher than that of the population carrying a single mutation (P106L). Although the members of this population survive under a high glyphosate dosage of 10,080gaeha-1, their growth was significantly inhibited by glyphosate under the recommend dose (840gaeha-1), where in the fresh weight was 85.4% of the control. EPSPS expression, relative copy number, and EPSPS activity in this population were similar to those of the susceptible population. In addition, the expression of two glutathione transferase (GST) genes (GST-U8 and GST-23) and the enzyme activity of the GST in this population did not significantly differ from those of the susceptible population. This finding is important in elucidating the resistance of the naturally evolved glyphosate-resistant (GR) weed species carrying a double mutation in EPSPS to glyphosate.
    Matched MeSH terms: Herbicides/pharmacology
  11. Cha TS, Najihah MG, Sahid IB, Chuah TS
    Pestic Biochem Physiol, 2014 May;111:7-13.
    PMID: 24861927 DOI: 10.1016/j.pestbp.2014.04.011
    Eleusine indica (goosegrass) populations resistant to fluazifop, an acetyl-CoA carboxylase (ACCase: EC6.4.1.2)-inhibiting herbicide, were found in several states in Malaysia. Dose-response assay indicated a resistance factor of 87.5, 62.5 and 150 for biotypes P2, P3 and P4, respectively. DNA sequencing and allele-specific PCR revealed that both biotypes P2 and P3 exhibit a single non-synonymous point mutation from TGG to TGC that leads to a well known Trp-2027-Cys mutation. Interestingly, the highly resistant biotype, P4, did not contain any of the known mutation except the newly discovered target point Asn-2097-Asp, which resulted from a nucleotide change in the codon AAT to GAT. ACCase gene expression was found differentially regulated in the susceptible biotype (P1) and highly resistant biotype P4 from 24 to 72h after treatment (HAT) when being treated with the recommended field rate (198gha(-1)) of fluazifop. However, the small and erratic differences of ACCase gene expression between biotype P1 and P4 does not support the 150-fold resistance in biotype P4. Therefore, the involvement of the target point Asn-2097-Asp and other non-target-site-based resistance mechanisms in the biotype P4 could not be ruled out.
    Matched MeSH terms: Herbicides/pharmacology*
  12. Ruzmi R, Ahmad-Hamdani MS, Mazlan N
    PLoS One, 2020;15(9):e0227397.
    PMID: 32925921 DOI: 10.1371/journal.pone.0227397
    The continuous and sole dependence on imidazolinone (IMI) herbicides for weedy rice control has led to the evolution of herbicide resistance in weedy rice populations across various countries growing IMI herbicide-resistant rice (IMI-rice), including Malaysia. A comprehensive study was conducted to elucidate occurrence, level, and mechanisms endowing resistance to IMI herbicides in putative resistant (R) weedy rice populations collected from three local Malaysian IMI-rice fields. Seed bioassay and whole-plant dose-response experiments were conducted using commercial IMI herbicides. Based on the resistance index (RI) quantification in both experiments, the cross-resistance pattern of R and susceptible (S) weedy rice populations and control rice varieties (IMI-rice variety MR220CL2 and non-IMI-rice variety MR219) to imazapic and imazapyr was determined. A molecular investigation was carried out by comparing the acetohydroxyacid synthase (AHAS) gene sequences of the R and S populations and the MR220CL2 and MR219 varieties. The AHAS gene sequences of R weedy rice were identical to those of MR220CL2, exhibiting a Ser-653-Asn substitution, which was absent in MR219 and S plants. In vitro assays were conducted using analytical grade IMI herbicides of imazapic (99.3%) and imazapyr (99.6%) at seven different concentrations. The results demonstrated that the AHAS enzyme extracted from the R populations and MR220CL2 was less sensitive to IMI herbicides than that from S and MR219, further supporting that IMI herbicide resistance was conferred by target-site mutation. In conclusion, IMI resistance in the selected populations of Malaysian weedy rice could be attributed to a Ser-653-Asn mutation that reduced the sensitivity of the target site to IMI herbicides. To our knowledge, this study is the first to show the resistance mechanism in weedy rice from Malaysian rice fields.
    Matched MeSH terms: Herbicides/pharmacology
  13. Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM
    Plant Physiol, 2002 Jul;129(3):1265-75.
    PMID: 12114580
    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.
    Matched MeSH terms: Herbicides/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links