Displaying all 7 publications

Abstract:
Sort:
  1. Al-Daghestani H, Qaisar R, Al Kawas S, Ghani N, Rani KGA, Azeem M, et al.
    Sci Rep, 2024 Feb 27;14(1):4719.
    PMID: 38413677 DOI: 10.1038/s41598-024-54944-7
    Hindlimb suspension (HLS) mice exhibit osteoporosis of the hindlimb bones and may be an excellent model to test pharmacological interventions. We investigated the effects of inhibiting endoplasmic reticulum (ER) stress with 4-phenyl butyrate (4-PBA) on the morphology, physicochemical properties, and bone turnover markers of hindlimbs in HLS mice. We randomly divided 21 male C57BL/6J mice into three groups, ground-based controls, untreated HLS group and 4-PBA treated group (HLS+4PBA) (100mg/kg/day, intraperitoneal) for 21 days. We investigated histopathology, micro-CT imaging, Raman spectroscopic analysis, and gene expression. Untreated HLS mice exhibited reduced osteocyte density, multinucleated osteoclast-like cells, adipocyte infiltration, and reduced trabecular striations on micro-CT than the control group. Raman spectroscopy revealed higher levels of ER stress, hydroxyproline, non-collagenous proteins, phenylalanine, tyrosine, and CH2Wag as well as a reduction in proteoglycans and adenine. Furthermore, bone alkaline phosphatase and osteocalcin were downregulated, while Cathepsin K, TRAP, and sclerostin were upregulated. Treatment with 4-PBA partially restored normal bone histology, increased collagen crosslinking, and mineralization, promoted anti-inflammatory markers, and downregulated bone resorption markers. Our findings suggest that mitigating ER stress with 4-PBA could be a therapeutic intervention to offset osteoporosis in conditions mimicking hindlimb suspension.
    Matched MeSH terms: Hindlimb Suspension*
  2. Chellian R, Pandy V, Mohamed Z
    Front Pharmacol, 2016;7:72.
    PMID: 27065863 DOI: 10.3389/fphar.2016.00072
    Alpha (α)-asarone is one of the main psychoactive compounds, present in Acorus species. Evidence suggests that the α-asarone possess an antidepressant-like activity in mice. However, the exact dose-dependent effect of α-asarone and mechanism(s) involved in the antidepressant-like activity are not clear. The present study aimed to investigate the dose-dependent effect of α-asarone and the underlining mechanism(s) involved in the antidepressant-like activity of α-asarone in the mouse model of tail suspension test (TST). In this study, the acute effect of α-asarone per se at different doses (10-100 mg/kg, i.p.) on immobility in the TST was studied. Additionally, the possible mechanism(s) involved in the antidepressant-like effect of α-asarone was studied using its interaction with noradrenergic and serotonergic neuromodulators in the TST. The present results reveal that the acute treatment of α-asarone elicited biphasic responses on immobility such that the duration of the immobility time is significantly reduced at lower doses (15 and 20 mg/kg, i.p.) but increased at higher doses (50 and 100 mg/kg, i.p.) in the TST. Besides, α-asarone at higher doses (50 and 100 mg/kg, i.p.) significantly decreased the spontaneous locomotor activity. Moreover, pretreatment of mice with noradrenergic neuromodulators such as AMPT (100 mg/kg, i.p., a catecholamine synthesis inhibitor), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist) and with serotonergic neuromodulators such as PCPA (100 mg/kg, i.p., once daily for four consecutive days, a serotonin synthesis inhibitor,) and WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) significantly reversed the anti-immobility effect of α-asarone (20 mg/kg, i.p.). Taken together, our results suggest that the acute treatment with α-asarone elicited biphasic actions in the TST in which antidepressant-like effect was seen at relatively lower doses (15 and 20 mg/kg, i.p.) and depressive-like activity at relatively higher doses (50 and 100 mg/kg, i.p.). Furthermore, it has been revealed that the antidepressant-like effect of α-asarone could be mediated through both noradrenergic (α1 and α2 adrenoceptors) and serotonergic (particularly, 5-HT1A receptors) systems.
    Matched MeSH terms: Hindlimb Suspension
  3. Goni O, Khan MF, Rahman MM, Hasan MZ, Kader FB, Sazzad N, et al.
    J Ethnopharmacol, 2021 Mar 25;268:113664.
    PMID: 33278545 DOI: 10.1016/j.jep.2020.113664
    ETHNOPHARMACOLOGICAL RELEVANCE: Aglaonema hookerianum Schott is an ethnomedicinally important plant used to treat a variety of diseases, including sexual and depression-like disorders. However, the scientific basis underlying the aforesaid properties have not been well justified.

    AIM OF THE STUDY: The present investigation aimed to investigate the anxiolytic, antidepressant and aphrodisiac potentials of methanol leaves extract of A. hookerianum (MEAH) in Swiss albino mice.

    MATERIALS & METHODS: Swiss albino mice (20-30 g) were orally administrated with MEAH at the doses ranging from 100 to 400 mg/kg, b.w. The elevated plus maze (EPM) and hole board test (HBT) were performed to determine the anxiolytic activity and the forced swimming test (FST) and tail suspension test (TST) were performed to determine the antidepressant activity of MEAH. Besides, the aphrodisiac activity of MEAH was conducted through the mounting behaviour and orientation behaviour analysis. Diazepam (1 mg/kg, b.w., i.p.) for EPM and HBT; fluoxetine HCl (20 mg/kg, b.w., p.o.) for FST and TST, and sildenafil (5 mg/kg, b.w., p.o.) for the mounting behaviour analysis and orientation behaviour analysis were used as reference drugs.

    RESULTS: The administration of the MEAH produced a strong (p 

    Matched MeSH terms: Hindlimb Suspension/adverse effects; Hindlimb Suspension/physiology; Hindlimb Suspension/psychology
  4. Chigurupati S, Shaikh SA, Mohammad JI, Selvarajan KK, Nemala AR, Khaw CH, et al.
    Indian J Pharmacol, 2017 10 17;49(3):229-235.
    PMID: 29033482 DOI: 10.4103/ijp.IJP_293_16
    OBJECTIVES: In this study, three (CS-1 to CS-3) azomethine derivatives of cinnamaldehyde were green synthesized, characterized, and their antioxidant and antidepressant activities were explored.

    MATERIALS AND METHODS: The antioxidant effect of these compounds was initially performed in vitro using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay methods before subjecting them to in vivo experiments. Compounds showing potent antioxidant activity (CS-1 and CS-2) were investigated further for their antidepressant activity using the forced swim test (FST) and tail suspension test (TST). Ascorbic acid (AA) and fluoxetine (20 mg/kg, p.o) were used as reference drugs for comparison in the antioxidant and antidepressant experiments, respectively.

    RESULTS: It was observed that CS-2 and CS-3 exhibited highest DPPH (half maximal inhibitory concentration [IC50]: 16.22 and 25.18 μg/mL) and ABTS (IC50: 17.2 and 28.86 μg/mL) radical scavenging activity, respectively, compared to AA (IC50: 15.73 and 16.79 μg/mL) and therefore, both CS-2 and CS-3 were tested for their antidepressant effect using FST and TST as experimental models. Pretreatment of CS-2 and CS-3 (20 mg/kg) for 10 days considerably decreased the immobility time in both the FST and TST models.

    CONCLUSION: The antioxidant and antidepressant effect of CS-2 and CS-3 may be attributed to the presence of azomethine linkage in the molecule.

    Matched MeSH terms: Hindlimb Suspension/psychology
  5. Saleem AM, Taufik Hidayat M, Mat Jais AM, Fakurazi S, Moklas M, Sulaiman MR, et al.
    Eur Rev Med Pharmacol Sci, 2011 Jul;15(7):795-802.
    PMID: 21780549
    Channa (C.) striatus (Malay-Haruan), is a fresh water snakehead fish, consumed as a rejuvenating diet in post-parturition period in local Malay population. The aqueous extract of C. striatus fillet (AECSF) was reported to act through serotonergic receptor system in a previous study. There is no scientific report on neuropharmacological effects of C. striatus. Based on these data, the antidepressant-like effect of C. striatus was evaluated in mice models of depression.
    Matched MeSH terms: Hindlimb Suspension
  6. Idayu NF, Hidayat MT, Moklas MA, Sharida F, Raudzah AR, Shamima AR, et al.
    Phytomedicine, 2011 Mar 15;18(5):402-7.
    PMID: 20869223 DOI: 10.1016/j.phymed.2010.08.011
    Mitragyna speciosa Korth. leaves have been used for decades as a traditional medicine to treat diarrhea, diabetes and to improve blood circulation by natives of Malaysia, Thailand and other regions of Southeast Asia. Mitragynine is the major active alkaloid in the plant. To date, the role of mitragynine in psychological disorders such as depression is not scientifically evaluated. Hence, the present investigation evaluates the antidepressant effect of mitragynine in the mouse forced swim test (FST) and tail suspension test (TST), two models predictive of antidepressant activity and the effect of mitragynine towards neuroendocrine system of hypothalamic-pituitary-adrenal (HPA) axis by measuring the corticosterone concentration of mice exposed to FST and TST. An open-field test (OFT) was used to detect any association of immobility in the FST and TST with changes in motor activity of mice treated with mitragynine. In the present study, mitragynine at dose of 10 mg/kg and 30 mg/kg i.p. injected significantly reduced the immobility time of mice in both FST and TST without any significant effect on locomotor activity in OFT. Moreover, mitragynine significantly reduced the released of corticosterone in mice exposed to FST and TST at dose of 10 mg/kg and 30 mg/kg. Overall, the present study clearly demonstrated that mitragynine exerts an antidepressant effect in animal behavioral model of depression (FST and TST) and the effect appears to be mediated by an interaction with neuroendocrine HPA axis systems.
    Matched MeSH terms: Hindlimb Suspension
  7. Saleem AM, Taufik Hidayat M, Jais AM, Fakurazi S, Moklas MA, Sulaiman MR, et al.
    Eur Rev Med Pharmacol Sci, 2013;17(15):2019-22.
    PMID: 23884821
    BACKGROUND: In our previous study, the aqueous extract of Channa striatus (family: Channidae) fillet (AECSF) showed an antidepressant-like effect in mice. However, the mechanism of the antidepressant-like effect is unknown.
    AIM: The objective of this study was to explore the involvement of monoamines in the antidepressant-like effect of AECSF in mice.
    MATERIALS AND METHODS: AECSF was prepared by steaming the fillets of C. striatus. The male ICR mice were pretreated with various monoaminergic antagonists viz., p-chlorophenylalanine (100 mg/kg, i.p.), prazosin (1 mg/kg, i.p.) and yohimbine (1 mg/kg, i.p.), SCH23390 (0.05 mg/kg, s.c.) and sulpiride (50 mg/kg, i.p.) followed by treatment with AECSF and tested in tail suspension test (TST). Two-way ANOVA with Tukey test were used at p < 0.05 for significance.
    RESULTS: The pretreatments with p-chlorophenylalanine, prazosin and yohimbine, but not with SCH23390 and sulpiride, were able to reverse the antidepressant-like effect of AECSF in TST.
    CONCLUSIONS: The antidepressant-like effect of AECSF may be mediated through the serotonergic and noradrenergic systems and not through the dopaminergic system.
    Matched MeSH terms: Hindlimb Suspension
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links