Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Li QZ, Xiong C, Wong WC, Zhou LW
    Int J Biol Macromol, 2024 Mar;260(Pt 2):129528.
    PMID: 38246471 DOI: 10.1016/j.ijbiomac.2024.129528
    Ganoderma is a well-known medicinal macrofungal genus, of which several species have been thoroughly studied from the medicinal perspective, but most species are rarely involved in. In this study, we focus on the polysaccharides extracted from Ganoderma boninense and their antioxidant activity. Ganoderma boninense is a serious pathogen of oil palms that are cultivated commercially in Southeast Asia. Response surface methodology was conducted to optimize the liquid medium composition, and the mycelia biomass reached 7.063 g/L, that is, 1.4-fold compared with the seed medium. The crude and purified polysaccharides extracted from the fermentation broth showed well 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging abilities, and the scavenging abilities of purified polysaccharides reached 94.47 % and 99.88 %, respectively. Six fractions of polysaccharides were extracted and purified from fruiting bodies, mycelia and fermentation broth separately with the elution buffers of distilled water and 0.1 M NaCl solution. Generally, the polysaccharides from fruiting bodies showed stronger protective effect on H2O2-induced HepG2 cell oxidative damage than other fractions. A total of five to seven monosaccharides were identified in the six fractions of polysaccharides. The correlation analysis revealed that the content of fucose was significantly correlated with the antioxidant activity of polysaccharides, while xylose showed negative correlation results. In summary, the polysaccharides from G. boninense have a potential to be used as natural antioxidants.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  2. Chiroma AA, Khaza'ai H, Abd Hamid R, Chang SK, Zakaria ZA, Zainal Z
    PLoS One, 2020;15(11):e0241112.
    PMID: 33232330 DOI: 10.1371/journal.pone.0241112
    Natural α-tocopherol (α-TCP), but not tocotrienol, is preferentially retained in the human body. α-Tocopherol transfer protein (α-TTP) is responsible for binding α-TCP for cellular uptake and has high affinity and specificity for α-TCP but not α-tocotrienol. The purpose of this study was to examine the modification of α-TTP together with other related vitamin E-binding genes (i.e., TTPA, SEC14L2, and PI-TPNA) in regulating vitamin E uptake in neuronal cells at rest and under oxidative stress. Oxidative stress was induced with H2O2 for an hour which was followed by supplementation with different ratios of α-TCP and tocotrienol-rich fraction (TRF) for four hours. The cellular levels of vitamin E were quantified to determine bioavailability at cellular levels. The expression levels of TTPA, SEC14L2, and PI-TPNA genes in 0% α-TCP were found to be positively correlated with the levels of vitamin E in resting neuronal cells. In addition, the regulation of all the above-mentioned genes affect the distribution of vitamin E in the neuronal cells. It was observed that, increased levels of α-TCP secretion occur under oxidative stress. Thus, our results showed that in conclusion vitamin E-binding proteins may be modified in the absence of α-TCP to produce tocotrienols (TCT), as a source of vitamin E. The current study suggests that the expression levels of vitamin E transport proteins may influence the cellular concentrations of vitamin E levels in the neuronal cells.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  3. Devasvaran K, Tan JJ, Ng CT, Fong LY, Yong YK
    Oxid Med Cell Longev, 2019;2019:1202676.
    PMID: 31531177 DOI: 10.1155/2019/1202676
    Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and β-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  4. Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, et al.
    Molecules, 2020 May 29;25(11).
    PMID: 32485974 DOI: 10.3390/molecules25112534
    Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  5. Cheah FC, Peskin AV, Wong FL, Ithnin A, Othman A, Winterbourn CC
    FASEB J, 2014 Jul;28(7):3205-10.
    PMID: 24636884 DOI: 10.1096/fj.14-250050
    Erythrocytes require glucose-6-phosphate dehydrogenase (G6PD) to generate NADPH and protect themselves against hemolytic anemia induced by oxidative stress. Peroxiredoxin 2 (Prx2) is a major antioxidant enzyme that requires NADPH to recycle its oxidized (disulfide-bonded) form. Our aims were to determine whether Prx2 is more highly oxidized in G6PD-deficient erythrocytes and whether these cells are able to recycle oxidized Prx2 after oxidant challenge. Blood was obtained from 61 Malaysian neonates with G6PD deficiency (average 33% normal activity) and 86 controls. Prx2 redox state was analyzed by Western blotting under nonreducing conditions. Prx2 in freshly isolated blood was predominantly reduced in both groups, but the median level of oxidation was significantly higher (8 vs 3%) and the range greater for the G6PD-deficient population. When treated with reagent H2O2, the G6PD-deficient erythrocytes were severely compromised in their ability to recycle oxidized Prx2, with only 27 or 4% reduction after 1 h treatment with 0.1 or 1 mM H2O2 respectively, compared with >97% reduction in control erythrocytes. The accumulation of oxidized Prx2 in oxidatively stressed erythrocytes with common G6PD variants suggests that impaired antioxidant activity of Prx2 could contribute to the hemolysis and other complications associated with the condition.-Cheah, F.-C., Peskin, A. V., Wong, F.-L., Ithnin, A., Othman, A., Winterbourn, C. C. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase deficient erythrocytes from newborn infants.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  6. Then SM, Mazlan M, Mat Top G, Wan Ngah WZ
    Cell Mol Neurobiol, 2009 Jun;29(4):485-96.
    PMID: 19172392 DOI: 10.1007/s10571-008-9340-8
    Besides acting as potent free radical scavengers, tocopherols and tocotrienols have been known to have non-antioxidant properties such as the involvement of alpha-tocopherol (alphaT) in PKC pathway and the anti-cancer properties of gamma-tocotrienol (gammaT3). This study aims to elucidate whether protective effects shown by alphaT and gammaT3 in H(2)O(2)-induced neuron cultures have anti-apoptotic or pro-apoptotic tendency toward the initiation of neuronal apoptosis. H(2)O(2) is used to induce apoptosis in primary cerebellar neuron cultures which is attenuated by pretreatment of alphaT or gammaT3 at concentrations < or =10 microM. Similar to our previous work, gammaT3 was found to be neurotoxic at concentrations > or =100 microM, whereas alphaT showed no neurotoxicity. Cellular uptake of gammaT3 was higher than that of alphaT. Treating cells simultaneously with either gammaT3 or alphaT and with then H(2)O(2) led to higher expression of Bax and Bcl-2 than in neurons exposed to H(2)O(2) alone. Analysis of Bcl-2/Bax ratio as 'survival index' showed that both pretreatment of gammaT3 and alphaT followed by H(2)O(2) increase the 'survival index' of Bcl-2/Bax ratio compared to H(2)O(2)-treated cells, while treatment of gammaT3 alone decrease the ratio compared to unchanged Bcl2/Bax ratio of similar treatment with alphaT alone. Similar treatment of gammaT3 decreased p53 expression and activates p38 MAPK phosphorylation, whereas alphaT did not alter its expression compared to H(2)O(2)-treated cells. Treating neurons with only gammaT3 or alphaT increased the expression of Bax, Bcl-2, p53, and p38 MAPK compared to control with gammaT3 exerting stronger expression for proteins involved than alphaT. In conclusion, low doses of gammaT3 and alphaT confer neuroprotection to H(2)O(2)-treated neurons via their antioxidant mechanism but gammaT3 has stronger pro-apoptosis tendency than alphaT by activating molecules involved in the neuronal apoptotic pathway in the absence of H(2)O(2).
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  7. Ng TS, Desa MNM, Sandai D, Chong PP, Than LTL
    Infect Genet Evol, 2016 06;40:331-338.
    PMID: 26358577 DOI: 10.1016/j.meegid.2015.09.004
    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  8. Mlambo LK, Abbasiliasi S, Tang HW, Ng ZJ, Parumasivam T, Hanafiah KM, et al.
    Curr Microbiol, 2022 Oct 17;79(12):359.
    PMID: 36251092 DOI: 10.1007/s00284-022-03038-6
    This study aims to evaluate the effects of bioactive metabolites produced by lactic acid bacteria against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. A total of six lactic acid bacteria (LAB) were selected to evaluate the antimicrobial activity against MRSA ATCC 43300, a skin pathogen that is highly resistant to most antibiotics. The K014 isolate from a fermented vegetable recorded the highest inhibition against MRSA ATCC 43300 at 91.93 ± 0.36%. 16S rRNA sequencing revealed the K014 isolate is closely related to L. plantarum and the sequence was subsequently deposited in the GenBank database with an accession number of MW180960, named as Lactiplantibacillus plantarum K014. The cell-free supernatant (CFS) of L. plantarum K014 had tolerance to high temperature as well as acidic pH. The bioactive metabolites, such as hydrogen peroxide, lactic acid and hyaluronic acid, were produced by L. plantarum K014. Result from ABTS assay showed higher antioxidant activity (46.28%) as compared to that obtained by DPPH assay (2.97%). The CFS had showed anti-inflammatory activity for lipoxygenase (LOX) assay at 43.66%. The bioactive metabolites of L. plantarum K014 showed very promising potential to be used topical skin pathogens.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  9. Nouri F, Salehinejad P, Nematollahi-Mahani SN, Kamarul T, Zarrindast MR, Sharifi AM
    Cell Mol Neurobiol, 2016 Jul;36(5):689-700.
    PMID: 26242172 DOI: 10.1007/s10571-015-0249-8
    Transplantation of neural-like cells is considered as a promising therapeutic strategy developed for neurodegenerative disease in particular for ischemic stroke. Since cell survival is a major concern following cell implantation, a number of studies have underlined the protective effects of preconditioning with hypoxia or hypoxia mimetic pharmacological agents such as deferoxamine (DFO), induced by activation of hypoxia inducible factor-1 (HIF-1) and its target genes. The present study has investigated the effects of DFO preconditioning on some factors involved in cell survival, angiogenesis, and neurogenesis of neural-like cells derived from human Wharton's jelly mesenchymal stem cells (HWJ-MSCs) in presence of hydrogen peroxide (H2O2). HWJ-MSCs were differentiated toward neural-like cells for 14 days and neural cell markers were identified using immunocytochemistry. HWJ-MSC-derived neural-like cells were then treated with 100 µM DFO, as a known hypoxia mimetic agent for 48 h. mRNA and protein expression of HIF-1 target genes including brain-derived neurotrophic factors (BDNF) and vascular endothelial growth factor (VEGF) significantly increased using RT-PCR and Western blotting which were reversed by HIF-1α inhibitor, while, gene expression of Akt-1, Bcl-2, and Bax did not change significantly but pAkt-1 was up-regulated as compared to poor DFO group. However, addition of H2O2 to DFO-treated cells resulted in higher resistance to H2O2-induced cell death. Western blotting analysis also showed significant up-regulation of HIF-1α, BDNF, VEGF, and pAkt-1, and decrease of Bax/Bcl-2 ratio as compared to poor DFO. These results may suggest that DFO preconditioning of HWJ-MSC-derived neural-like cells improves their tolerance and therapeutic potential and might be considered as a valuable strategy to improve cell therapy.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  10. Ooi TC, Chan KM, Sharif R
    Free Radic Res, 2020 May;54(5):330-340.
    PMID: 32366187 DOI: 10.1080/10715762.2020.1763333
    Zinc L-carnosine (ZnC) is a chelated compound of zinc and L-carnosine. The present study aims to determine the protective effects of ZnC against hydrogen peroxide (H2O2)-induced oxidative stress and genomic damage in CCD-18co human normal colon fibroblast cells. Generally, cells were pretreated with ZnC (0-100 µM) for 24 h before challenged with 20 µM of H2O2 for 1 h to induce oxidative damage. Results showed that pretreatment with ZnC was able to reduce the intracellular ROS level in CCD-18co cells after being challenged with H2O2. Moreover, pretreatment with ZnC demonstrated protection from H2O2-induced DNA strand breaks and micronucleus formation. Our current findings revealed that pretreatment with ZnC could induce the activation of MTF-1 signaling pathway and expression of metallothionein (MT) in a dose-dependent manner. However, ZnC did not have any effects on Nrf2 signaling pathway and the expression of glutathione, superoxide dismutase 1, and glutamate-cysteine ligase catalytic subunit (GCLC). Furthermore, pretreatment with ZnC did not induce the expression of OGG1 and PARP-1 in CCD-18co cells, suggesting that these two DNA repairing enzymes are not related to the genoprotective effects of ZnC. Since the expression of MT has been demonstrated to protect cells from oxidative DNA damage induced by various genotoxic agents, the genoprotective effects of ZnC might be due to the ability of ZnC to induce the expression of MT. In conclusion, ZnC pretreatment was able to protect CCD-18co cells from H2O2-induced genomic damage via the activation of the MTF-1 signalling pathway and the induction of MT expression.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  11. Xiang X, Wang Y, Huang G, Huang J, Gao M, Sun M, et al.
    J Steroid Biochem Mol Biol, 2023 Mar;227:106244.
    PMID: 36584773 DOI: 10.1016/j.jsbmb.2022.106244
    OBJECTIVE: 17β-estradiol (17β-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17β-E2-induced autophagy.

    METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated β-galactosidase staining.

    RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17β-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17β-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17β-E2-induced autophagy and suppression of H2O2-induced senescence.

    CONCLUSION: Our findings demonstrated that 17β-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.

    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  12. Subramani B, Subbannagounder S, Ramanathanpullai C, Palanivel S, Ramasamy R
    Exp Biol Med (Maywood), 2017 03;242(6):645-656.
    PMID: 28092181 DOI: 10.1177/1535370216688568
    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H2O2. Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H2O2. Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  13. Khandaker MM, Boyce AN, Osman N
    Plant Physiol Biochem, 2012 Apr;53:101-10.
    PMID: 22349652 DOI: 10.1016/j.plaphy.2012.01.016
    The present study represents the first report of the effect of hydrogen peroxide (H(2)O(2)) on the growth, development and quality of the wax apple fruit, a widely cultivated fruit tree in South East Asia. The wax apple trees were spray treated with 0, 5, 20 and 50 mM H(2)O(2) under field conditions. Photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves and total soluble solids and total sugar content of the fruits of wax apple (Syzygium samarangense, var. jambu madu) were significantly increased after treatment with 5 mM H(2)O(2). The application of 20 mM H(2)O(2) significantly reduced bud drop and enhanced fruit growth, resulting in larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control. In addition, the endogenous level of H(2)O(2) in wax apple leaves increased significantly with H(2)O(2) treatments. With regard to fruit quality, 20 mM H(2)O(2) treatment increased the K(+), anthocyanin and carotene contents of the fruits by 65%, 67%, and 41%, respectively. In addition, higher flavonoid, phenol and soluble protein content, sucrose phosphate synthase (SPS), phenylalanine ammonia lyase (PAL) and antioxidant activities were recorded in the treated fruits. There was a positive correlation between peel colour (hue) and TSS, between net photosynthesis and SPS activity and between phenol and flavonoid content with antioxidant activity in H(2)O(2)-treated fruits. It is concluded that spraying with 5 and 20 mM H(2)O(2) once a week produced better fruit growth, maximising the yield and quality of wax apple fruits under field conditions.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  14. Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ
    Oxid Med Cell Longev, 2010 Jan-Feb;3(1):35-43.
    PMID: 20716926 DOI: 10.4161/oxim.3.1.9940
    The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienol prevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  15. Makpol S, Yaacob N, Zainuddin A, Yusof YA, Ngah WZ
    Afr J Tradit Complement Altern Med, 2009 Jul 03;6(4):560-72.
    PMID: 20606778
    The objective of this study was to investigate the modulatory effect of Chlorella vulgaris on cultured fibroblast cells derived from young and old aged individuals focusing on DNA damage, telomere length and telomerase activity. Dose-response test of the algal extract on cells in both age groups revealed that optimum viability was observed at a concentration of 50 microg/ml. Results obtained showed that Chlorella vulgaris exhibited protective effects against H(2)O(2)-induced oxidative stress as shown by the reduction in damaged DNA caused by H(2)O(2) treatment (p<0.05) in Chlorella vulgaris pre- and post-treated groups (p<0.05). Pre-treatment of Chlorella vulgaris resulted in a significant decrease in DNA damage suggesting a bioprotective effect against free radical attacks. A decline in DNA damage was observed in post-treated cells which proves Chlorella vulgaris to present bioremediative properties. In cells induced with oxidative stress, telomere length decreased significantly coupled with a concomitant decline of telomerase activity (p<0.05). However, these reductions were prevented with prior and post treatment of Chlorella vulgaris. Therefore, we concluded that Chlorella vulgaris exhibited bioprotective effects especially in cells obtained from young donor but were more bioremediative for cells obtained from old donor as indicated by DNA damage, telomere shortening and reduction in telomerase activity.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  16. Seng HL, Von ST, Tan KW, Maah MJ, Ng SW, Rahman RN, et al.
    Biometals, 2010 Feb;23(1):99-118.
    PMID: 19787298 DOI: 10.1007/s10534-009-9271-y
    Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-kappa(2) N,O)(2)(1,10-phenanthroline-kappa(2) N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)(2)(phen)]x5H(2)O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5'-AG(3)(T(2)AG(3))(3)-3', can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  17. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  18. Chin LC, Achike FI, Mustafa MR
    Vascul. Pharmacol., 2007 Mar;46(3):223-8.
    PMID: 17126611 DOI: 10.1016/j.vph.2006.10.005
    Hydrogen peroxide (H(2)O(2)) contributes in the regulation of vascular tone, especially in pathological states. The role of H(2)O(2) and superoxide anion free radicals in angiotensin II (Ang II)-induced contraction of diabetic tissues was examined with the aim of elucidating the underlying mechanisms. Isometric tension in response to various drug treatments was measured in isolated superior mesenteric arteries of streptozotocin (STZ)-induced diabetic WKY rats using the Mulvany wire myograph. Compared to the normal (euglycaemic) arteries, the Ang II-induced contraction was significantly reduced in diabetic arteries. Superoxide dismutase (SOD; converts superoxide to H(2)O(2)) significantly reduced the contraction in both types of arteries -- an effect abolished by catalase (H(2)O(2) scavenger), suggesting that the SOD effect was mediated by H(2)O(2). Treatment with catalase had no effect on the Ang II contraction in euglycaemic arteries, but it raised the contraction in diabetic arteries to euglycaemic levels. This increase was similar to that observed with diabetic arteries incubated with L-NAME. Combined catalase and L-NAME treatment further enhanced the contraction in diabetic arteries, suggesting that the catalase effect was not mediated by nitric oxide (NO). The catalase effect was abolished by indomethacin treatment. These results suggest that attenuation of Ang II-induced contraction in diabetic tissues is modulated by endogenous H(2)O(2), the scavenging of which unmasks an indomethacin-sensitive (and therefore cyclooxygenase product-mediated) Ang II-induced contraction.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  19. Zainuddin A, Chua KH, Abdul Rahim N, Makpol S
    BMC Mol. Biol., 2010;11:59.
    PMID: 20707929 DOI: 10.1186/1471-2199-11-59
    Several genes have been used as housekeeping genes and choosing an appropriate reference gene is important for accurate quantitative RNA expression in real time RT-PCR technique. The expression levels of reference genes should remain constant between the cells of different tissues and under different experimental conditions. The purpose of this study was to determine the effect of different experimental treatments on the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA so that the reliability of GAPDH as reference gene for quantitative real time RT-PCR in human diploid fibroblasts (HDFs) can be validated. HDFs in 4 different treatment groups viz; young (passage 4), senescent (passage 30), H2O2-induced oxidative stress and gamma-tocotrienol (GTT)-treated groups were harvested for total RNA extraction. Total RNA concentration and purity were determined prior to GAPDH mRNA quantification. Standard curve of GAPDH expression in serial diluted total RNA, melting curve analysis and agarose gel electrophoresis were used to determine the reliability of GAPDH as reference gene.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  20. Hou Z, Imam MU, Ismail M, Azmi NH, Ismail N, Ideris A, et al.
    Biosci Biotechnol Biochem, 2015;79(10):1570-8.
    PMID: 26057702 DOI: 10.1080/09168451.2015.1050989
    There are reports of improved redox outcomes due to consumption of Edible Bird's Nest (EBN). Many of the functional effects of EBN can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of aging and its related diseases like Alzheimer's disease. In this study, the antioxidative potentials of EBN and its constituents, lactoferrin (LF) and ovotransferrin (OVF), were determined and protective effects against hydrogen peroxide (H2O2)- induced toxicity on SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange and propidium iodide (AO/PI) staining with microscopy were examined. Results showed that EBN and its constituents attenuated H2O2-induced cytotoxicity, and decreased radical oxygen species (ROS) through increased scavenging activity. Furthermore, LF, OVF, and EBN produced transcriptional changes in antioxidant related genes that tended towards neuroprotection as compared to H2O2-treated group. Overall, the results suggest that LF and OVF may produce synergistic or all-or-none antioxidative effects in EBN.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links