Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Zainordin 'F, Ab Hamid S
    Trop Life Sci Res, 2017 Jul;28(2):9-29.
    PMID: 28890758 MyJurnal DOI: 10.21315/tlsr2017.28.2.2
    Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ(13)C values of all producers ranged from -35.29 ± 0.21 to -26.00 ± 0.050‰. The greatest δ(15)N values noted was in zenarchopterid fish with 9.68 ± 0.020‰. The δ(15)N values of aquatic insects ranged between 2.59 ± 0.107 in Elmidae (Coleoptera) and 8.11 ± 0.022‰ in Nepidae (Hemiptera). Correspondingly, with all the δ(13)C and δ(15)N values recorded, it can be deduced that there are four trophic levels existed in the freshwater ecosystems which started with the producer (plants), followed by primary consumer (aquatic insects and non-predatory fish), secondary consumer (invertebrate predators) and lastly tertiary consumer (vertebrate predators).
    Matched MeSH terms: Invertebrates
  2. Jinggut T, Yule CM, Boyero L
    Sci Total Environ, 2012 Oct 15;437:83-90.
    PMID: 22922133 DOI: 10.1016/j.scitotenv.2012.07.062
    In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown.
    Matched MeSH terms: Invertebrates/metabolism
  3. Dalu T, Wasserman RJ, Tonkin JD, Alexander ME, Dalu MTB, Motitsoe SN, et al.
    Sci Total Environ, 2017 Dec 01;601-602:1340-1348.
    PMID: 28605853 DOI: 10.1016/j.scitotenv.2017.06.023
    Understanding the drivers of community structure is fundamental for adequately managing ecosystems under global change. Here we used a large dataset of eighty-four headwater stream sites in three catchments in the Eastern Highlands of Zimbabwe, which represent a variety of abiotic conditions and levels of impairment, to examine the drivers of benthic macroinvertebrate community structure. We focused our assessment on macroinvertebrate family level community composition and functional feeding group classifications. Taxonomic richness was weakly positively correlated with ammonium, phosphates and pH, and weakly negatively correlated with detrital cover and dissolved oxygen. Measured abiotic variables, however, had limited influence on both macroinvertebrate diversity and functional feeding group structure, with the exception of ammonium, channel width and phosphates. This reflected the fact that many macroinvertebrate families and functional feeding guilds were well represented across a broad range of habitats. Predatory macroinvertebrates were relatively abundant, with collector-filterers having the lowest relative abundances. The findings of the study suggest that for certain ecological questions, a more detailed taxonomic resolution may be required to adequately understand the ecology of aquatic macroinvertebrates within river systems. We further recommend management and conservation initiatives on the Save River system, which showed significant impact from catchment developmental pressures, such as urbanisation, agriculture and illegal mining.
    Matched MeSH terms: Invertebrates*
  4. Mohammed, Konto, Tukur, Salamatu M., Watanabe, Mahira, Abd-rani, Puteri A.m., Lau, Seng F., Shettima, Yasheruram M., et al.
    MyJurnal
    Changes in tick-vector densities and a resultant incidence of tick-borne diseases are
    caused mainly by human activities affecting the environmental ecosystem, especially in tropical
    countries. As one of the most important invertebrate arthropod vectors of disease transmission, ticks
    are susceptible to changes in their environment due to their sole dependence of all their life stages on
    prevailing environment. Upon completion of their lifecycle, ticks depend on the availability of hosts
    and other several factors related to their surroundings to survive. This review discusses the major
    factors that influence the prevalence and distribution of tick-borne diseases among domestic animals
    in Malaysia. It is highly imperative to understand the factors that lead to increase in tick-vector
    populations, infection intensity and hence the spatial distribution of ticks and tick-borne diseases in
    order to prevent their emergence and resurgence as well as to serve as a basis for effectivecontrol.
    Matched MeSH terms: Invertebrates
  5. MARSDEN AT
    Med J Malaya, 1960 Mar;14:187-90.
    PMID: 13767159
    Matched MeSH terms: Invertebrates*
  6. Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, et al.
    J Anim Ecol, 2018 Jan;87(1):293-300.
    PMID: 28791685 DOI: 10.1111/1365-2656.12728
    Ants are diverse and abundant, especially in tropical ecosystems. They are often cited as the agents of key ecological processes, but their precise contributions compared with other organisms have rarely been quantified. Through the removal of food resources from the forest floor and subsequent transport to nests, ants play an important role in the redistribution of nutrients in rainforests. This is an essential ecosystem process and a key energetic link between higher trophic levels, decomposers and primary producers. We used the removal of carbohydrate, protein and seed baits as a proxy to quantify the contribution that ants, other invertebrates and vertebrates make to the redistribution of nutrients around the forest floor, and determined to what extent there is functional redundancy across ants, other invertebrate and vertebrate groups. Using a large-scale, field-based manipulation experiment, we suppressed ants from c. 1 ha plots in a lowland tropical rainforest in Sabah, Malaysia. Using a combination of treatment and control plots, and cages to exclude vertebrates, we made food resources available to: (i) the whole foraging community, (ii) only invertebrates and (iii) only non-ant invertebrates. This allowed us to partition bait removal into that taken by vertebrates, non-ant invertebrates and ants. Additionally, we examined how the non-ant invertebrate community responded to ant exclusion. When the whole foraging community had access to food resources, we found that ants were responsible for 52% of total bait removal whilst vertebrates and non-ant invertebrates removed the remaining 48%. Where vertebrates were excluded, ants carried out 61% of invertebrate-mediated bait removal, with all other invertebrates removing the remaining 39%. Vertebrates were responsible for just 24% of bait removal and invertebrates (including ants) collectively removed the remaining 76%. There was no compensation in bait removal rate when ants and vertebrates were excluded, indicating low functional redundancy between these groups. This study is the first to quantify the contribution of ants to the removal of food resources from rainforest floors and thus nutrient redistribution. We demonstrate that ants are functionally unique in this role because no other organisms compensated to maintain bait removal rate in their absence. As such, we strengthen a growing body of evidence establishing ants as ecosystem engineers, and provide new insights into the role of ants in maintaining key ecosystem processes. In this way, we further our basic understanding of the functioning of tropical rainforest ecosystems.
    Matched MeSH terms: Invertebrates/physiology
  7. Shaharudin Abdul Razak
    A study of the major Arthropoda taxa of invertebrates recolonizing Saraca roots occurring on various substrates and under various water velocities was carried out in the upper reaches of the Gombak River. The sites for the recolonization experiments were selected in the fast and slow flowing sections of rocks and boulders, sand and gravel and mud and silt biotopes. The Hydropsychidae and the Nemouridae were the pioneer recolonizers of Saraea roots in the fast flowing sections of the stream whereas the Ptilodactylidae and the Caenidae were the pioneer recolonizers in the slow flowing sections of the stream.
    Suatu kajian telah dijalankan bagi menentukan takson utama invertebrata Arthropoda yang mengkoloni semula akar Saraca yang didapati pada pelbagai substrat dan pada kelajuan air yang berbeza di bahagian hulu Sungai Gombak. Tapak-tapak untuk ujikaji pengkolonian-semula telah dipilih pada bahagian laju dan perlahan biotop batuan besar dan sederhana, pasir dan batuan kecil, dan lumpur dan kelodak. Hydropsychidae dan Nemouridae adalah pengkoloni perintis pada akar Saraca di bahagian aliran laju sungai sementara Ptilodactylidae dan Caeflidae adalah pengkoloni perintis di bahagian aliran perlahan sungai itu.
    Matched MeSH terms: Invertebrates
  8. Lee NSM, Clements GR, Ting ASY, Wong ZH, Yek SH
    PeerJ, 2020;8:e10033.
    PMID: 33062440 DOI: 10.7717/peerj.10033
    Background: Human population growth has led to biodiversity declines in tropical cities. While habitat loss and fragmentation have been the main drivers of urban biodiversity loss, man-made interventions to reduce health risks have also emerged as an unintentional threat. For instance, insecticide fogging to control mosquito populations has become the most common method of preventing the expansion of mosquito-borne diseases such as Dengue. However, the effectiveness of fogging in killing mosquitoes has been called into question. One concern is the unintended effect of insecticide fogging on non-target invertebrates that are crucial for the maintenance of urban ecosystems. Here, we investigate the impacts of fogging on: (1) target invertebrate taxon (Diptera, including mosquitoes); (2) non-target invertebrate taxa; and (3) the foraging behavior of an invertebrate pollinator taxon (Lepidoptera) within an urban tropical forest.

    Methods: We carried out fogging with Pyrethroid insecticide (Detral 2.5 EC) at 10 different sites in a forest situated in the state of Selangor, Peninsular Malaysia. Across the sites, we counted the numbers of knocked-down invertebrates and identified them based on morphology to different taxa. We constructed Bayesian hierarchical Poisson regression models to investigate the effects of fogging on: (1) a target invertebrate taxon (Diptera) 3-h post-fogging; (2) selected non-target invertebrate taxa 3-h post-fogging; and (3) an invertebrate pollinator taxon (Lepidoptera) 24-h post-fogging.

    Results: A total of 1,874 invertebrates from 19 invertebrate orders were knocked down by the fogging treatment across the 10 sites. Furthermore, 72.7% of the invertebrates counted 3-h post-fogging was considered dead. Our regression models showed that given the data and prior information, the probability that fogging had a negative effect on invertebrate taxa 3-h post-fogging was 100%, with reductions to 11% of the pre-fogging count of live individuals for the target invertebrate taxon (Diptera), and between 5% and 58% of the pre-fogging count of live individuals for non-target invertebrate taxa. For the invertebrate pollinator, the probability that fogging had a negative effect 24-h post-fogging was also 100%, with reductions to 53% of the pre-fogging count of live individuals.

    Discussion: Our Bayesian models unequivocally demonstrate that fogging has detrimental effects on one pollinator order and non-target invertebrate orders, especially taxa that have comparatively lower levels of chitinisation. While fogging is effective in killing the target order (Diptera), no mosquitos were found dead in our experiment. In order to maintain urban biodiversity, we recommend that health authorities and the private sector move away from persistent insecticide fogging and to explore alternative measures to control adult mosquito populations.

    Matched MeSH terms: Invertebrates
  9. Balogun WG, Cobham AE, Amin A, Seeni A
    Neuroscience, 2018 03 15;374:323-325.
    PMID: 29427653 DOI: 10.1016/j.neuroscience.2018.01.062
    Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years.
    Matched MeSH terms: Invertebrates*
  10. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
    Matched MeSH terms: Invertebrates/physiology*
  11. Balogun WG, Cobham AE, Amin A, Seeni A
    Metab Brain Dis, 2018 10;33(5):1431-1441.
    PMID: 29797116 DOI: 10.1007/s11011-018-0250-2
    Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
    Matched MeSH terms: Invertebrates*
  12. Mohd Nasir N, Barnes DKA, Wan Hussin WMR
    Mar Environ Res, 2024 Feb;194:106341.
    PMID: 38183736 DOI: 10.1016/j.marenvres.2024.106341
    Marine ecosystems in Antarctica are thought to be highly vulnerable to aspects of dynamic global climate change, such as warming. In deep-water ecosystems, there has been little physico-chemical change in seawater there for millions of years. Thus, some benthic organisms are likely to include strong potential indicators of environmental changes and give early warnings of ecosystem vulnerability. In 2017 we sampled deep-water benthic assemblages across a continental shelf trough in outer Marguerite Bay, West Antarctic Peninsula (WAP). This region is one of the hotspots of climate-related physical change on Earth in terms of seasonal sea ice loss. Video and images of the seabed were captured at 5 stations, each with 20 replicates. From these, we identified substratum types and biota to functional groups to assess variability in benthic composition and diversity. We also collected coincident environmental information on depth, temperature, salinity, oxygen and chlorophyll-a (using a CTD). Climax sessile suspension feeders were the most spatially dominant group, comprising 539 individuals (39% of total abundance) that included Porifera, Brachiopoda and erect Bryozoa. ST5, the shallowest station was functionally contrasting with other stations. This functional difference was also influenced by hard substrata of ST5, which is typically preferred by climax sessile suspension feeders. Depth (or an associated driver) and hard substrates were the most apparent key factor which functionally characterised the communities, shown by the abundance of climax sessile suspension feeders. Our study showed that non-invasive, low taxonomic skill requirement, functional group approach is not only valuable in providing functional perspective on environment status, but such groupings also proved to be sensitive to environmental variability.
    Matched MeSH terms: Invertebrates*
  13. Chai TT, Law YC, Wong FC, Kim SK
    Mar Drugs, 2017 Feb 16;15(2).
    PMID: 28212329 DOI: 10.3390/md15020042
    Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed.
    Matched MeSH terms: Invertebrates/metabolism*
  14. Siti Fathiah Masre
    MyJurnal
    Sea cucumbers, blind cylindrical marine invertebrates that live in the ocean intertidal beds have more than thousand species available of varying morphology and colours throughout the world. Sea cucumbers have long been exploited in traditional treatment as a source of natural medicinal compounds. Various nutritional and therapeutic values have been linked to this invertebrate. These creatures have been eaten since ancient times and purported as the most commonly consumed echinoderms. Some important biological activities of sea cucumbers including anti-hypertension, anti-inflammatory, anti-cancer, anti-asthmatic, anti-bacterial and wound healing. Thus, this short review comes with the principal aim to cover the profile, taxonomy, together with nutritional and medicinal properties of sea cucumbers.
    Matched MeSH terms: Invertebrates
  15. Nurul Fariza Rossle, Mohamed Kamel Abd Ghani, Anisah Nordin, Yusof Suboh, Noraina Ab Rahim
    MyJurnal
    This study was carried out to observe thermotolerance ability of Acanthamoeba spp. A total of 32 Acanthamoeba spp. isolates obtained from water taps, sinks, swimming pools and sea water were used. Trophozoites of Acanthamoeba spp. were inoculated onto non-nutrient agar (NNA) seeded with heat-killed Escherichia coli using aseptic technique and incubated for 14 days at 30°C to obtain the cyst. The cysts were subcultured onto new agar plates for thermotolerance test at 37°C and 42°C. The plates were observed until 96 hours after incubation for excystation of Acanthamoeba before being declared negative. Overall, 81.25% of samples were able to excyst at 37°C while 37.5% were able to excyst at 42°C. Thermotolerant Acanthamoeba is associated with high pathogenicity potential.
    Matched MeSH terms: Invertebrates
  16. Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SA
    J Therm Biol, 2015 Dec;54:118-32.
    PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004
    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
    Matched MeSH terms: Invertebrates
  17. Azdayanti Muslim, Putri Shafinaz Sharudin, Atiqah Yunus, Norhabsah Omar, Alieya Zakaria, Norshafiqah Mohamad
    MyJurnal
    Sarcocystis spp. are obligate intracellular protozoan parasites which cause meat-borne parasitic disease. In Malaysia, sarcocystosis is seen as a potential emerging food-borne zoonosis after a series of large outbreak of human infections. Humans acquire infection either by ingestion of cyst in raw or undercooked infected meat or from sporocysts in contaminated food and water. The goal of this study is to identify the presence of sarcocystis parasites in meat of cattle, buffaloes, sheep and goats collected from local markets in Selangor, Malaysia. Methods: A total of 64 skeletal muscles samples (57 cattle, 2 buffaloes, 4 goats and 1 sheep) were collected from local markets. The samples were cut randomly into three pieces, squashed firmly between two glass slides and then examined microscopically for the presence of cysts. Results: Three samples of meat (4.69 %) from cattle (1), buffalo (1) and sheep (1) were found to be positive for cysts. The cysts were confirmed by PCR as sarcocystis sp. Conclusion: The results showed low prevalence of Sarcocystis infection in meat collected from local markets. However, since there is a transmission among the livestock, extra precaution should be taken in consideration to prevent the spreading of sarcocystosis from animals to human.
    Matched MeSH terms: Invertebrates
  18. Che Salmah MR, Al-Shami SA, Abu Hassan A, Madrus MR, Nurul Huda A
    Int J Biometeorol, 2014 Jul;58(5):679-90.
    PMID: 23483291 DOI: 10.1007/s00484-013-0648-9
    The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22% were shredders. Biodiversity of shredders was described by alpha (αaverage), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6-115 and average per site of 37.29±3.48 SE) from 31 taxa with 2-13 taxa per site (αaverage=6.98±0.33 SE) and 10-15 taxa per catchment (γ=13.33±0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj-R2=0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj-R2=0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity (r2=0.161 and 0.237, respectively) as well as abundance of shredders (r2=0.235). Canopy cover was correlated positively with β diversity (r2=0.378) and abundance (r2=0.266), meanwhile altitude was correlated positively with β (quadratic: r2=0.175), γ diversity (quadratic: r2=0.848) as well as abundance (quadratic: r2=0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.
    Matched MeSH terms: Invertebrates/classification*
  19. Chan XY, Chang CY, Hong KW, Tee KK, Yin WF, Chan KG
    Gut Pathog, 2013;5(1):29.
    PMID: 24148830 DOI: 10.1186/1757-4749-5-29
    Serratia marcescens is an opportunistic bacterial pathogen with broad range of host ranging from vertebrates, invertebrates and plants. S. marcescens strain W2.3 was isolated from a diseased tilapia fish and it was suspected to be the causal agent for the fish disease as virulence genes were found within its genome. In this study, for the first time, the genome sequences of S. marcescens strain W2.3 were sequenced using the Illumina MiSeq platform.
    Matched MeSH terms: Invertebrates
  20. Thoha H, Muawanah, Bayu Intan MD, Rachman A, Sianturi OR, Sidabutar T, et al.
    Front Microbiol, 2019;10:306.
    PMID: 30846977 DOI: 10.3389/fmicb.2019.00306
    Margalefidinium polykrikoides, an unarmored dinoflagellate, was suspected to be the causative agent of the harmful algal blooms - associated with massive fish mortalities - that have occurred continually in Lampung Bay, Indonesia, since the first bloom event in October 2012. In this study, after examination of the morphology of putative M. polykrikoides-like cysts sampled in bottom sediments, cyst bed distribution of this harmful species was explored in the inner bay. Sediment samples showed that resting cysts, including several morphotypes previously reported as M. polykrikoides, were most abundant on the northern coast of Lampung Bay, ranging from 20.6 to 645.6 cysts g-1 dry sediment. Molecular phylogeny inferred from LSU rDNA revealed that the so-called Mediterranean ribotype was detected in the sediment while M. polykrikoides motile cells, four-cell chain forming in bloom conditions, belonged to the American-Malaysian ribotype. Moreover, hyaline cysts, exclusively in the form of four-cell chains, were also recorded. Overall, these results unequivocally show that the species M. polykrikoides is abundantly present, in the form of vegetative cells, hyaline and resting cysts in an Indonesian area.
    Matched MeSH terms: Invertebrates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links