Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Larva/drug effects
  2. Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Sep;30(18):2077-84.
    PMID: 26679526 DOI: 10.1080/14786419.2015.1114935
    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.
    Matched MeSH terms: Larva/drug effects
  3. Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, et al.
    Parasitol Res, 2016 Mar;115(3):1085-96.
    PMID: 26621285 DOI: 10.1007/s00436-015-4838-8
    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as a safe tool to build newer and safer mosquitocides and chemotherapeutic agents with little systemic toxicity.
    Matched MeSH terms: Larva/drug effects
  4. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, et al.
    Parasitol Res, 2016 Mar;115(3):997-1013.
    PMID: 26612497 DOI: 10.1007/s00436-015-4828-x
    Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 μg/ml (CQ-s) and 71.16 μg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 μg/ml (CQ-s) and 88.34 μg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.
    Matched MeSH terms: Larva/drug effects
  5. Al-Rofaai A, Rahman WA, Sulaiman SF, Yahaya ZS
    Vet Parasitol, 2012 Nov 23;190(1-2):127-35.
    PMID: 22749290 DOI: 10.1016/j.vetpar.2012.05.028
    This study aimed to represent the first report of the ovicidal and larvicidal activity of the methanolic leaf extract of Manihot esculenta (cassava) against eggs and larvae of susceptible and resistant strains of Trichostrongylus colubriformis. As well as, to determine the total tannin compounds, antioxidant activity and toxicity of the extract. The egg hatch test was used to evaluate ovicidal activity against unembryonated eggs, whereas larval feeding inhibition assay and MTT-formazan assay were used to evaluate larvicidal activity against first (L(1)) and infective (L(3)) larvae, respectively. The results showed no significant differences were detected between the sensitivities of susceptible and resistant strains of T. colubriformis to the extract. Eggs, L(1) and L(3) were significantly affected (P<0.001) compared with negative control, and L(1) were more sensitive than the eggs and L(3). The total tannin compounds were investigated using tannin quantification assay and determined by 254.44 TAE/mg. The antioxidant activity was evaluated using the DPPH radical scavenging assay and the median inhibition concentration (IC(50)) was determined by 2.638 mg/ml. Acute oral toxicity at dose of 5,000 mg/kg, and sub-chronic oral toxicity at 500 and 1,000 mg/kg of the extract were observed in male and female Sprague-Dawley (SD) rats. The acute oral toxicity revealed that the median lethal dose (LD(50)) of methanolic extract of cassava leaves on SD rats was greater than 5,000 mg/kg, whereas the sub-chronic oral toxicity did not show observed adverse effects at 500 and 1,000 mg/kg per day for 28 days. In conclusion, the methanolic extract of cassava leaves has direct ovicidal and larvicidal activity against T. colubriformis strains with a safety margin for animals, and it may be potentially utilized as a source of natural antioxidants.
    Matched MeSH terms: Larva/drug effects
  6. Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D
    PMID: 17333767
    The bioefficacy of indoor residual-sprayed deltamethrin wettable granule (WG) formulation at 25 mg a.i./m2 and 20 mg a.i./m2 for the control of malaria was compared with the current dose of 20 mg/m2 deltamethrin wettable powder (WP) in aboriginal settlements in Kuala Lipis, Pahang, Malaysia. The malaria vector has been previously identified as Anopheles maculatus. The assessment period for the 20 mg/m2 dosage was six months, but for the 25 mg/m2 dosage, the period was 9 months. Collections of mosquitoes using the bare-leg techniques were carried out indoors and outdoors from 7:00 PM to 7:00 AM. All mosquitoes were dissected for sporozoites and parity. Larval collections were carried out at various locations to assess the extent and distribution of breeding of vectors. A high incidence of human feeds was detected during May 2005 and a low incidence during January 2005 for all the study areas. Our study showed that deltamethrin WG at 25 mg/m2 suppressed An. maculatus biting activity. More An. maculatus were caught in outdoor landing catches than indoor landing catches for all the study areas. The results indicate that 25 mg/m2 WG is good for controlling malaria for up to 9 months. Where residual spraying is envisaged, the usual two spraying cycles per year with 20 mg/m2 deltamethrin may be replaced with 25 mg/m2 deltamethrin WG every 9 months.
    Matched MeSH terms: Larva/drug effects
  7. Dieng H, Tan Yusop NS, Kamal NN, Ahmad AH, Ghani IA, Abang F, et al.
    J Agric Food Chem, 2016 May 11;64(18):3485-91.
    PMID: 27115536 DOI: 10.1021/acs.jafc.6b01157
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
    Matched MeSH terms: Larva/drug effects
  8. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al.
    Parasitol Res, 2015 Nov;114(11):4087-97.
    PMID: 26227141 DOI: 10.1007/s00436-015-4638-1
    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.
    Matched MeSH terms: Larva/drug effects
  9. Rozilawati H, Lee HL, Mohd Masri S, Mohd Noor I, Rosman S
    Trop Biomed, 2005 Dec;22(2):143-8.
    PMID: 16883280 MyJurnal
    Field bioefficacy of residual-sprayed deltamethrin against Aedes vectors was evaluated in an urban residential area in Kuala Lumpur. The trial area consisted of single storey wood-brick houses and a block of flat. The houses were treated with outdoor residual spraying while the flat was used as an untreated control. Initial pre-survey using ovitrap surveillance indicated high Aedes population in the area. Deltamethrin WG was sprayed at a dosage of 25mg/m2 using a compression sprayer. The effectiveness of deltamethrin was determined by wall bioassay and ovitrap surveillance. The residual activity of 25mg/m2 deltamethrin was still effective for 6 weeks after treatment, based on biweekly bioassay results. Bioassay also indicated that both Aedes aegypti and Aedes albopictus were more susceptible on the wooden surfaces than on brick. Aedes aegypti was more susceptible than Ae. albopictus against deltamethrin. Residual spraying of deltamethrin was not very effective against Aedes in this study since the Aedes population in the study area did not reduce as indicated by the total number of larvae collected using the ovitrap (Wilcoxon Sign Test, p> 0.05). Further studies are required to improve the effectiveness of residual spraying against Aedes vectors.
    Matched MeSH terms: Larva/drug effects
  10. Karami A, Groman DB, Wilson SP, Ismail P, Neela VK
    Environ Pollut, 2017 Apr;223:466-475.
    PMID: 28129952 DOI: 10.1016/j.envpol.2017.01.047
    There are serious concerns over the adverse impacts of microplastics (MPs) on living organisms. The main objective of this study was to test the effects of MPs on the total length, weight, condition factor (CF), transcriptional level of antioxidant, anti and pro-apoptotic, and neurotransmitter genes, and the histopathology of the gill, liver, brain, kidney, and intestine in the larvae of zebrafish (Danio rerio). Fish were exposed to one of three levels of pristine low-density polyethylene (LDPE) fragments (5, 50, or 500 μg/L) for 10 or 20 days. No significant changes were observed in any of the selected biomarkers across MP concentrations at days 10 or 20. The expression of casp9 (caspase 9, apoptosis-related cysteine protease), casp3a (caspase 3, apoptosis-related cysteine protease a) and cat (catalase), however, were significantly lower in the larvae sampled at day 20 than day 10. We provide evidence that virgin short-term exposure to LDPE fragments has minimal impact on biomarker responses in D. rerio larvae.
    Matched MeSH terms: Larva/drug effects*
  11. Leong CS, Vythilingam I, Wong ML, Wan Sulaiman WY, Lau YL
    Acta Trop, 2018 Sep;185:115-126.
    PMID: 29758171 DOI: 10.1016/j.actatropica.2018.05.008
    The resistance status of Selangor Aedes aegypti (Linnaeus) larvae against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Aedes aegypti were susceptible against temephos (organophosphate), although resistance (RR50 = 0.21-2.64) may be developing. The insecticides susceptibility status of Ae. aegypti larvae were found heterogeneous among the different study sites. Results showed that Ae. aegypti larvae from Klang, Sabak Bernam and Sepang were susceptible against all insecticides tested. However, other study sites exhibited low to high resistance against all pyrethroids (RR50 = 1.19-32.16). Overall, the application of synergists ethacrynic acid, S.S.S.- tributylphosphorotrithioate and piperonyl butoxide increased the toxicity of insecticides investigated. However, the application failed to increase the mortality to susceptible level (>97%) for certain populations, therefore there are chances of alteration of target site resistance involved. Biochemical assays revealed that α-esterase, (Gombak, Kuala Langat, Kuala Selangor and Sabak Bernam strains) β-esterase (Klang and Sabak Bernam strains), acetylcholinesterase (Kuala Selangor and Sabak Bernam strains), glutathione-S-transferase (Kuala Selangor and Sabak Bernam strains) and mono-oxygenases (Gombak, Hulu Langat, Hulu Selangor and Kuala Langat strains) were elevated. Spearman rank-order correlation indicated a significant correlation between resistance ratios of: DDT and deltamethrin (r = 0.683, P = 0.042), cyfluthrin and deltamethrin (r = 0.867, P =0.002), cyflyuthrin and lambdacyhalothrin (r = 0.800, P =0.010), cyfluthrin and permethrin (r = 0.770, P =0.015) deltamethrin and permethrin (r = 0.803, P =0.088), propoxur and malathion (r = 0.867, P = 0.002), malathion and temephos (r = 0.800, P = 0.010), etofenprox and MFO enzyme (r = 0.667, P =0.050). The current study provides baseline information for vector control programs conducted by local authorities. The susceptibility status of Ae. aegypti should be monitored sporadically to ensure the effectiveness of current vector control strategy in Selangor.
    Matched MeSH terms: Larva/drug effects*
  12. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, et al.
    Aquat Toxicol, 2017 Jul;188:100-108.
    PMID: 28482328 DOI: 10.1016/j.aquatox.2017.04.015
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
    Matched MeSH terms: Larva/drug effects
  13. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
    Matched MeSH terms: Larva/drug effects
  14. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ
    Appl Environ Microbiol, 2004 Dec;70(12):7010-7.
    PMID: 15574894
    The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.
    Matched MeSH terms: Larva/drug effects
  15. Ali ZA, Roslan MA, Yahya R, Wan Sulaiman WY, Puteh R
    IET Nanobiotechnol, 2017 Mar;11(2):152-156.
    PMID: 28476997 DOI: 10.1049/iet-nbt.2015.0123
    In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50 = 15.76 ppm and LC90 = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.
    Matched MeSH terms: Larva/drug effects*
  16. Shinn AP, Mühlhölzl AP, Coates CJ, Metochis C, Freeman MA
    J Invertebr Pathol, 2015 Feb;125:81-6.
    PMID: 25499897 DOI: 10.1016/j.jip.2014.12.002
    An outbreak of the sessile peritrich Zoothamnium duplicatum in a pilot, commercial-scale Limulus polyphemus hatchery resulted in the loss of ∼96% (40,000) second/third instar larvae over a 61day period. peritrich growth was heavy, leading to mechanical obstruction of the gills and physical damage. The peritrichs were controlled without resultant loss of juvenile crabs by administering 10ppm chlorine in freshwater for 1h and the addition of aquarium grade sand; a medium into which the crabs could burrow and facilitate cleaning of the carapace. Peritrich identity was confirmed from a partial SSU rDNA contiguous sequence of 1343bp (99.7% similarity to Z. duplicatum).
    Matched MeSH terms: Larva/drug effects
  17. Al-Rofaai A, Rahman WA, Abdulghani M
    Parasitol Res, 2013 Feb;112(2):893-8.
    PMID: 22961237 DOI: 10.1007/s00436-012-3113-5
    The sensitivity of larval paralysis assay (LPA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) assay was compared to evaluate the anthelmintic activity of plant extracts. In this study, the methanolic extract of Azadirachta indica (neem) was evaluated for its activity against the infective-stage larvae (L(3)) of susceptible and resistant Haemonchus contortus strains using the two aforementioned assays. In both in vitro assays, the same serial concentrations of the extract were used, and the median lethal concentrations were determined to compare the sensitivity of both assays. The results revealed a significant difference (P < 0.05) in the sensitivity of the LPA and the MTT-formazan assay. The MTT-formazan assay is more feasible for practical applications because it measured the L(3) mortality more accurately than LPA. This study may help find a suitable assay for investigating the anthelmintic activity of plant extracts against trichostrongylid nematodes.
    Matched MeSH terms: Larva/drug effects
  18. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jun;80(6):516-20.
    PMID: 18414763 DOI: 10.1007/s00128-008-9413-x
    A study was conducted to determine the suitability of using selected aquatic dipterian larvae for biomonitoring bioassays. The organisms included a member of the biting midge family that was identified as Culicoides furens and a member of the non-biting midge family, identified as Chironomus plumosus. Median lethal toxicity tests were conducted to observe the variation between metal sensitivities between the two larval forms and how variations in temperature could affect the experimental setup. Nine heavy metals were used in the study. It was observed that the 96 h LC(50) (in mg/L) for the different metals was found to be Zn-16.21 (18.55 +/- 13.87); Cr-0.96 (1.08 +/- 0.84); Ag-4.22 (6.87 +/- 1.57); Ni-0.42 (0.59 +/- 0.25); Hg-0.42 (0.59 +/- 0.25); Pb-16.21 (18.31 +/- 14.11); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (7.19 +/- 1.25); Cd-0.42 (0.59 +/- 0.25) for the Chironomus plumosus and Zn-4.22 (6.56 +/- 1.88); Cr-0.42 (0.54 +/- 0.30); Ag-0.42 (0.54 +/- 0.30); Ni-0.42 (0.54 +/- 0.30); Hg-0.04 (0.07 +/- 0.01); Pb-0.42 (0.54 +/- 0.30); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (6.56 +/- 1.88); Cd-0.42 (0.54 +/- 0.30) in the case of the Culicoides furens. With temperature as a variable the LC(50) values were observed to increase from 2.51 mg/L at 10 degrees C to 4.22 ppm at 30 degrees C and to reduce slightly to 3.72 mg/L at 35 degrees C as seen in the case of Zn. It was also observed that at 40 degrees C thermal toxicity and chemical toxicity overlapped as 100% mortality was observed in the controls. This trend was observed in all metals for both C. plumosus and C. furens. Thus indicating temperature played an important role in determining LC(50) values of toxicants.
    Matched MeSH terms: Larva/drug effects
  19. Ee GC, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M
    Nat Prod Res, 2006 Oct;20(12):1067-73.
    PMID: 17127660
    Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4), 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone (5), mangostanol (6) and 5,9-dihydroxy-8- methoxy-2,2-dimethyl-7-(3-methylbut-2-enyl)-2H,6H-pyrano-[3,2-b]-xanthene-6-one (7). The structures of these compounds were determined by spectroscopic methods such as 1H NMR, 13C NMR, mass spectrometry (MS) and by comparison with previous studies. All the crude extracts when screened for their larvicidal activities indicated very good toxicity against the larvae of Aedes aegypti. This article reports the isolation and identification of the above compounds as well as bioassay data for the crude extracts. These bioassay data have not been reported before.
    Matched MeSH terms: Larva/drug effects
  20. Courtney R, Sachlikidis N, Jones R, Seymour J
    PLoS One, 2015;10(5):e0124256.
    PMID: 25970583 DOI: 10.1371/journal.pone.0124256
    Adult Carukia barnesi medusae feed predominantly on larval fish; however, their mode of prey capture seems more complex than previously described. Our findings revealed that during light conditions, this species extends its tentacles and 'twitches' them frequently. This highlights the lure-like nematocyst clusters in the water column, which actively attract larval fish that are consequently stung and consumed. This fishing behavior was not observed during dark conditions, presumably to reduce energy expenditure when they are not luring visually oriented prey. We found that larger medusae have longer tentacles; however, the spacing between the nematocyst clusters is not dependent on size, suggesting that the spacing of the nematocyst clusters is important for prey capture. Additionally, larger specimens twitch their tentacles more frequently than small specimens, which correlate with their recent ontogenetic prey shift from plankton to larval fish. These results indicate that adult medusae of C. barnesi are not opportunistically grazing in the water column, but instead utilize sophisticated prey capture techniques to specifically target larval fish.
    Matched MeSH terms: Larva/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links