Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Abdi MM, Abdullah LC, Sadrolhosseini AR, Mat Yunus WM, Moksin MM, Tahir PM
    PLoS One, 2011;6(9):e24578.
    PMID: 21931763 DOI: 10.1371/journal.pone.0024578
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
    Matched MeSH terms: Lead/analysis*
  2. Abubakar A, Zangina AS, Maigari AI, Badamasi MM, Ishak MY, Abdullahi AS, et al.
    Environ Sci Pollut Res Int, 2022 Aug;29(40):61065-61079.
    PMID: 35435558 DOI: 10.1007/s11356-022-19974-6
    Improper treatment during recycling of e-waste materials by means of open burning is on the rise which has led to an increase in air pollution. This study looked at heavy metal concentrations, concentrations in relation to threshold values, and assessments of risk for noncarcinogenic and cancer risk threat. The Microwave Plasma-Atomic Emission Spectrometry (MP-AES 4210) series instrument of Agilent Technology, United States of America (USA), was used in analyzing heavy metal (Cd, Cu, and Pb) concentrations. The result of the analysis of the Kuka Bulukiya treatment point revealed that Pb has the highest mean concentration of 0.0693 ppm, Cu 0.0525 parts per million (PPM), and Cd 0.0042 ppm. The mean concentration at PRP Gidan Ruwa for Cd was found to be 0.0059 ppm, Cu 0.0363 ppm, and Pb 0.049 ppm. The result of the adult and children population calculated shows that the hazard quotient (HQ) and hazard index (HI) values are not up to 1 in all the pathways (inhalation, ingestion, and dermal) at both treatment points (1.2 ˟ 10-4 and 9.8 ˟ 10-5) and (6.4 ˟ 10-4 and 5.9 ˟ 10-4), respectively. The cancer risk for Kuka Bulukiya 6 ˟ 10-10 and PRP G/Ruwa 5 ˟ 10-10 for adults and 7 ˟ 10-10 and 4 ˟ 10-10 for children were both lower than the threshold set for cancer risk by the United States Environmental Protection Agency (USEPA). This meant that both adults and children were not at risk of cancer and noncarcinogenic threat based on the assessment in this study. The study concluded that informal e-waste burning has substantially helped in the relatively high levels of air pollution identified in the treatment points and in turn posed environmental and public health concerns to people around the area. This study recommends that samples of the vegetable products at the PRP G/Ruwa treatment point should be investigated immediately and adequate restrictions and regulations should be enacted and enforced in order to safeguard the environment and the populace. There is need for caution from the authorities to avert the possible implications (e-waste extractors and the public) of being affected with noncarcinogenic or carcinogenic ailments over time.
    Matched MeSH terms: Lead/analysis
  3. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Lead/analysis*
  4. Ajab H, Ali Khan AA, Nazir MS, Yaqub A, Abdullah MA
    Environ Res, 2019 09;176:108563.
    PMID: 31280029 DOI: 10.1016/j.envres.2019.108563
    Environmental monitoring is important to determine the extent of eco-system pollution and degradation so that effective remedial strategies can be formulated. In this study, an environmentally friendly and cost-effective sensor made up of novel carbon electrode modified with cellulose and hydroxyapatite was developed for the detection of trace lead ions in aqueous system and palm oil mill effluent. Zinc, cadmium, and copper with lead were simultaneously detected using this method. The electrode exhibited high tolerance towards twelve common metal ions and three model surface active substances - sodium dodecyl sulfate, Triton X-100, and cetyltrimethylammonium bromide. Under optimum conditions, the sensor detected lead ions in palm oil mill effluent in the concentration range of 10-50 μg/L with 0.11 ± 0.37 μg/L limit of detection and 0.37 ± 0.37 μg/L limit of quantification. The validation using tap water, blood serum and palm oil mill effluent samples and compared with Atomic Absorption Spectroscopy, suggested excellent sensitivity of the sensor to detect lead ions in simple and complex matrices. The cellulose produced based on "green" techniques from agro-lignocellulosic wastes, in combination with hydroxyapatite, were proven effective as components in the carbon electrode composite. It has great potential in both clinical and environmental use.
    Matched MeSH terms: Lead/analysis
  5. Al'Abri AM, Mohamad S, Abdul Halim SN, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11410-11426.
    PMID: 30805837 DOI: 10.1007/s11356-019-04467-w
    A novel porous coordination polymer adsorbent (BTCA-P-Cu-CP) based on a piperazine(P) as a ligand and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a linker was synthesized and magnetized to form magnetic porous coordination polymer (BTCA-P-Cu-MCP). Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscope(FESEM), energy-dispersive X-ray spectroscopy(EDS), CHN, and Brunauer-Emmett-Teller(BET) analysis were used to characterize the synthesized adsorbent. BTCA-P-Cu-MCP was used for removal and preconcentration of Pb(II) ions from environmental water samples prior to flame atomic absorption spectrometry(FAAS) analysis. The maximum adsorption capacity of BTCA-P-Cu-MCP was 582 mg g-1. Adsorption isotherm, kinetic, and thermodynamic parameters were investigated for Pb(II) ions adsorption. Magnetic solid phase extraction (MSPE) method was used for preconcentration of Pb(II) ions and the parameters influencing the preconcentration process have been examined. The linearity range of proposed method was 0.1-100 μg L-1 with a preconcentration factor of 100. The limits of detection and limits of quantification for lead were 0.03 μg L-1 and 0.11 μg L-1, respectively. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSDs) were 1.54 and 3.43% respectively. The recoveries from 94.75 ± 4 to 100.93 ± 1.9% were obtained for rapid extraction of trace levels of Pb(II) ions in different water samples. The results showed that the BTCA-P-Cu-MCP was steady and effective adsorbent for the decontamination and preconcentration of lead ions from the aqueous environment.
    Matched MeSH terms: Lead/analysis*
  6. Alkarkhi AF, Ramli SB, Easa AM
    Int J Food Sci Nutr, 2009;60 Suppl 4:116-25.
    PMID: 19115121 DOI: 10.1080/09637480802609368
    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
    Matched MeSH terms: Lead/analysis
  7. Ang HH, Lee KL, Kiyoshi M
    Int J Environ Health Res, 2004 Aug;14(4):261-72.
    PMID: 15369991
    The DCA (Drug Control Authority), Malaysia implemented the phase 3 registration of traditional medicines on 1 January 1992 with special emphasis on the quality, efficacy and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicinal preparations. As such, a total of 100 traditional medicinal preparations, containing Smilax myosotiflora, in various pharmaceutical dosage forms, which were bought in the Malaysian market, were analysed for lead content using atomic absorption spectrophotometry. Results showed that 15% of the products analysed possessed 10.23-23.05 ppm of lead, and therefore, do not comply with the quality requirement for traditional medicines in Malaysia. The quality requirement for traditional medicines in Malaysia is that they should not exceed 10 ppm of lead. Out of these 15 products, five products exhibited 10.23-23.05 ppm of lead, in fact they have already been registered with the DCA Malaysia. However, the rest of the products, which possessed 12.24-20.72 ppm of lead, have still not been registered with the DCA Malaysia. Although this study successfully showed that only 85% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to lead, they cannot, however, be assumed to be safe from lead contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Lead/analysis*
  8. Ang HH
    Food Chem Toxicol, 2008 Jun;46(6):1969-75.
    PMID: 18328612 DOI: 10.1016/j.fct.2008.01.037
    The Drug Control Authority (DCA) of Malaysia implemented the phase three registration of traditional medicines on 1 January, 1992. A total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Eugenia dyeriana, either single or combined preparations (more than one medicinal plant), were analyzed for the presence of lead contamination, using atomic absorption spectrophotometry. These samples were bought from different commercial sources in the Malaysian market, after performing a simple random sampling. Results showed that 22% of the above products failed to comply with the quality requirement for traditional medicines in Malaysia. Although this study showed that 78% of the products fully complied with the quality requirement for traditional medicines in Malaysia pertaining to lead, however, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Lead/analysis*
  9. Ang HH, Lee EL, Matsumoto K
    Hum Exp Toxicol, 2003 Aug;22(8):445-51.
    PMID: 12948085 DOI: 10.1191/0960327103ht382oa
    In Malaysia, the phase 3 registration for traditional medicines was implemented on 1 January 1992 under the Control of Drugs and Cosmetics Regulation 1984, emphasizing quality, efficacy and safety (including the detection of the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. Therefore, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, were analysed for lead content using atomic absorption spectrophotometer. Results showed that 8% (eight products) possessed 10.64-20.72 ppm of lead, and therefore, do not comply with the quality requirement for traditional medicines in Malaysia. One of these products, M-Tongkat Ali (exhibited 10.64 +/-0.37 ppm of lead), was in fact already registered with the DCA Malaysia. The rest, Sukarno Tongkat Ali, Eurycoma Madu, Super Pill Tongkat Ali, Force Pill Tongkat Ali, Tender Pill Tongkat Ali, Super Pill Tongkat Ali Plus and Great Pill Tongkat Ali Plus have not registered with the DCA Malaysia and exhibited 12.24-20.72 ppm of lead. Although this study showed that only 92% of the products complied with the quality requirement for traditional medicines in Malaysia, however, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Lead/analysis*
  10. Ang HH, Lee KL, Kiyoshi M
    Int J Toxicol, 2005 May-Jun;24(3):165-71.
    PMID: 16040569 DOI: 10.1080/10915810590952942
    The DCA (Drug Control Authority) of Malaysia implemented the phase 3 registration of traditional medicines on 1 January 1992. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation containing Smilax luzonensis, either single or combined preparations, were analyzed for the presence of lead, using atomic absorption spectrophotometry. Results showed that 14% of the above products possessed 10.02 to 21.21 ppm of lead, and, therefore, they failed to comply with the quality requirement for traditional medicines in Malaysia ( <10 ppm). Although this study showed that 86% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to lead, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Lead/analysis*
  11. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM
    Bioresour Technol, 2008 Sep;99(13):5786-92.
    PMID: 18023577
    In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.
    Matched MeSH terms: Lead/analysis*
  12. Asare EA, Abdul-Wahab D, Asamoah A, Dampare SB, Kaufmann EE, Wahi R, et al.
    Environ Monit Assess, 2024 May 01;196(5):494.
    PMID: 38691200 DOI: 10.1007/s10661-024-12654-7
    This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.
    Matched MeSH terms: Lead/analysis
  13. Ashrafi M, Mohamad S, Yusoff I, Shahul Hamid F
    Environ Sci Pollut Res Int, 2015 Jan;22(1):223-30.
    PMID: 25060308 DOI: 10.1007/s11356-014-3299-4
    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.
    Matched MeSH terms: Lead/analysis
  14. Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, et al.
    Respirology, 2000 Jun;5(2):183-96.
    PMID: 10894109
    OBJECTIVE: Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998.

    METHODOLOGY: The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods.

    RESULTS: During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion).

    CONCLUSIONS: The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.

    Matched MeSH terms: Lead/analysis
  15. Awang N, Jamaluddin F
    J Environ Public Health, 2014;2014:408275.
    PMID: 25136371 DOI: 10.1155/2014/408275
    This study was carried out to determine the concentration of lead (Pb), anions, and cations at six primary schools located around Kuala Lumpur. Low volume sampler (MiniVol PM10) was used to collect the suspended particulates in indoor and outdoor air. Results showed that the concentration of Pb in indoor air was in the range of 5.18 ± 1.08 μg/g-7.01 ± 0.08 μg/g. All the concentrations of Pb in indoor air were higher than in outdoor air at all sampling stations. The concentrations of cations and anions were higher in outdoor air than in indoor air. The concentration of Ca(2+) (39.51 ± 5.01 mg/g-65.13 ± 9.42 mg/g) was the highest because the cation existed naturally in soil dusts, while the concentrations of NO3 (-) and SO4 (2-) were higher in outdoor air because there were more sources of exposure for anions in outdoor air, such as highly congested traffic and motor vehicles emissions. In comparison, the concentration of NO3 (-) (29.72 ± 0.31 μg/g-32.00 ± 0.75 μg/g) was slightly higher than SO4 (2-). The concentrations of most of the parameters in this study, such as Mg(2+), Ca(2+), NO3 (-), SO4 (2-), and Pb(2+), were higher in outdoor air than in indoor air at all sampling stations.
    Matched MeSH terms: Lead/analysis*
  16. Babji AS, Embong MS, Woon WW
    Bull Environ Contam Toxicol, 1979 Dec;23(6):830-6.
    PMID: 519067
    Matched MeSH terms: Lead/analysis
  17. Chew LT, Bradley DA, Mohd AY, Jamil MM
    Appl Radiat Isot, 2000 9 26;53(4-5):633-8.
    PMID: 11003500
    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 microg (g tooth mass)(-1) to 40.5 microg (g tooth mass)(-1). with a median of 9.8 microg (g tooth mass)(-1). A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 microg (g tooth mass)(-1) respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.
    Matched MeSH terms: Lead/analysis
  18. Chia SE, Chia KS, Ong CN
    Ann Acad Med Singap, 1991 Nov;20(6):758-61.
    PMID: 1803964
    Blood lead levels of two ethnic groups (11 Chinese and 25 Malays) of workers in a factory manufacturing lead accumulator battery were studied. The mean adjusted (for environmental lead levels, age, exposure duration and stick-years of smoking by analysis of covariance) blood lead level of the Malays was 34.8 micrograms/dl as compared to 22.4 micrograms/dl for the Chinese. This difference was significant (p less than 0.02). Oral ingestion of lead, through eating of food with hands contaminated by lead compound, among the Malay workers was suggested as a possible cause for the difference in the mean blood lead levels. Preventive measures and recommendations to overcome the problem among this particular group of workers were discussed.
    Matched MeSH terms: Lead/analysis
  19. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Lead/analysis*
  20. Clark CS, Rampal KG, Thuppil V, Roda SM, Succop P, Menrath W, et al.
    Environ Res, 2009 Oct;109(7):930-6.
    PMID: 19656507 DOI: 10.1016/j.envres.2009.07.002
    In 2006 a report on the analysis for lead in 80 new residential paints from four countries in Asia revealed high levels in three of the countries (China, India and Malaysia) and low levels in a fourth country (Singapore) where a lead in paint regulation was enforced. The authors warned of the possible export of lead-painted consumer products to the United States and other countries and the dangers the lead paint represented to children in the countries where it was available for purchase. The need for a worldwide ban on the use of lead in paints was emphasized to prevent an increase in exposure and disease from this very preventable environmental source. Since the earlier paper almost 300 additional new paint samples have been collected from the four initial countries plus 8 additional countries, three from Asia, three from Africa and two from South America. During the intervening time period two million toys and other items imported into the United States were recalled because the lead content exceeded the United States standard. High lead paints were detected in all 12 countries. The average lead concentration by country ranged from 6988 (Singapore) to 31,960ppm (Ecuador). One multinational company sold high lead paint in one country through January 2007 but sold low lead paint later in 2007 indicating that a major change to cease adding lead to their paints had occurred. However, the finding that almost one-third of the samples would meet the new United States standard for new paint of 90ppm, suggests that the technology is already available in at least 11 of the 12 countries to produce low lead enamel paints for domestic use. The need remains urgent to establish effective worldwide controls to prevent the needless poisoning of millions of children from this preventable exposure.
    Matched MeSH terms: Lead/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links