METHODS: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort.
RESULTS: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.
CONCLUSION: Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.
OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.
MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.
RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.
CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.
MATERIALS AND METHODS: A literature search was performed to identify potential miRNAs involved in the pathogenesis of HCC. Unpaired serum and ascitic fluid were obtained from 52 patients with NASH related liver cirrhosis (n=26 for each group of with and without HCC). Exosomal miRNA was isolated from all samples. Expression levels of miR-182, miR-301a and miR- 373 were determined using quantitative real-time PCR.
RESULTS: Serum-derived exosomal mir-182, miR-301a and miR-373 were significantly up-regulated with fold change of 1.77, 2.52, and 1.67 (p< 0.05) respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC. We identified the expression levels of ascitic fluid-derived exosomal mir-182, miR-301a, and miR-373 were significantly up-regulated with fold change of 1.6, 1.94 and 2.13 respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC (p <0.05). There was poor correlation expression of all the selected exosomal miRNA between serum- and ascitic fluid-derived in HCC group.
CONCLUSIONS: This preliminary data showed significant increase in the expression levels of exosomal miR-182, miR-301a and miR- 373 in both serum and ascetic fluid suggesting the possible roles of these miRNAs as circulating biomarkers for NASH-induced liver cirrhosis with hepatocellular carcinoma.
OBJECTIVES: The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene.
METHODS: The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of the pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. Highthroughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development.
RESULTS: In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene- driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from the most to the least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins.
CONCLUSION: The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines.
MATERIALS AND METHODS: Cell viability assay using MTT, DNA fragmentation assay and real-time PCR were used to evaluate the cytotoxic effects of latex whole C-serum and its subfractions on the cell lines.
RESULTS: MTT assay revealed very low LC(50) values, 2.0 and 280 ng/ml, for DCS and DCP treatments, respectively. DCS was proven to be more potent compared to DCP, in conferring specific anti-proliferative effects on the cancer cell lines. The study also indicated that anti-proliferative activity of pre-heated C-serum fractions diminished significantly.
CONCLUSION: Although noteworthy cell death was reported, DNA fragmentation assay and real-time PCR confirmed that that induced by latex C-serum subfractions was not promoted via the classical apoptotic signalling pathway.