Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Zulkhairi A, Zaiton Z, Jamaluddin M, Sharida F, Mohd TH, Hasnah B, et al.
    Biomed Pharmacother, 2008 Dec;62(10):716-22.
    PMID: 18538528 DOI: 10.1016/j.biopha.2006.12.003
    There is accumulating data demonstrated hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group K, AT and ALA (n=6). While group K was fed with normal chow and acted as a control, the rest fed with 100 g/head/day with 1% high cholesterol diet to induce hypercholesterolemia. 4.2 mg/body weight of alpha lipoic acid was supplemented daily to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning of the study, week 5 and week 10 and plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. Animals were sacrificed at the end of the study and the aortas were excised for intimal lesion analysis. The results showed a significant reduction of lipid peroxidation index indicated with low MDA level (p<0.05) in ALA group compared to that of the AT group. The blood total cholesterol (TCHOL) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the AT group (p<0.05). Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to that of AT group. These findings suggested that apart from its antioxidant activity, alpha lipoic acid may also posses a lipid lowering effect indicated with low plasma TCHOL and LDL levels and reduced the athero-lesion formation in rabbits fed a high cholesterol diet.
    Matched MeSH terms: Microsomes/metabolism
  2. Wahab NFAC, Kannan TP, Mahmood Z, Rahman IA, Ismail H
    Toxicol In Vitro, 2018 Mar;47:207-212.
    PMID: 29247761 DOI: 10.1016/j.tiv.2017.12.002
    Biphasic Calcium Phosphate (BCP) with a ratio of 20/80 Hydroxyapatite (HA)/Beta-tricalcium phosphate (β-TCP) promotes the differentiation of human dental pulp cells (HDPCs). In the current study, the genotoxicity of locally produced BCP of modified porosity (65%) with a mean pore size of 300micrometer (μm) was assessed using Comet and Ames assays. HDPCs were treated with BCP extract at three different inhibitory concentrations which were obtained based on cytotoxicity test conducted with concurrent negative and positive controls. The tail moment of HDPCs treated with BCP extract at all three concentrations showed no significant difference compared to negative control (p>0.05), indicating that BCP did not induce DNA damage to HDPCs. The BCP was evaluated using five tester strains of Salmonella typhimurium TA98, TA100, TA102, TA1537 and TA1538. Each strain was incubated with BCP extract with five different concentrations in the presence and absence of metabolic activation system (S9) mix. Concurrently, negative and positive controls were included. The average number of revertant colonies per plate treated with the BCP extract was less than double as compared to the number of revertant colonies in negative control plate and no dose-related increase was observed. Results from both assays suggested that the BCP of modified porosity did not exhibit any genotoxic effect under the present test conditions.
    Matched MeSH terms: Microsomes/enzymology
  3. Takhi M, Sreenivas K, Reddy CK, Munikumar M, Praveena K, Sudheer P, et al.
    Eur J Med Chem, 2014 Sep 12;84:382-94.
    PMID: 25036796 DOI: 10.1016/j.ejmech.2014.07.036
    A novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-positive pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochemical inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clinically relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, AEA16, in Escherichia coli FabI enzyme was determined unambiguously using X-ray crystallography. The lead compounds displayed good metabolic stability in mice liver microsomes and pharmacokinetic profile in mice. The in vivo efficacy of lead AEA16 has been demonstrated in a lethal murine systemic infection model.
    Matched MeSH terms: Microsomes, Liver/metabolism
  4. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
    Matched MeSH terms: Microsomes, Liver/enzymology
  5. Sim SM, Back DJ, Breckenridge AM
    Br J Clin Pharmacol, 1991 Jul;32(1):17-21.
    PMID: 1909542
    1. Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the drug of proven efficacy available for the treatment of patients with AIDS or ARC. It is eliminated mainly by hepatic glucuronidation. Therefore, interference with this metabolic pathway may lead to enhancement of AZT effect or to increased toxicity of the drug. We have examined the effect of a number of drugs which themselves undergo glucuronidation on AZT conjugation by human liver microsomes in vitro. 2. AZT glucuronidation followed Michaelis-Menten kinetics. The apparent Km and Vmax values (mean +/- s.d., n = 5), were 2.60 +/- 0.52 mM and 68.0 +/- 23.4 nmol h-1 mg-1, respectively, as determined from Eadie-Hofstee plots. 3. Dideoxyinosine, sulphanilamide and paracetamol were essentially non-inhibitory at concentrations up to 10 mM (4 times the concentration of AZT in the incubation). The most marked inhibitory effects were seen with indomethacin, naproxen, chloramphenicol, probenecid and ethinyloestradiol, with enzyme activity decreased by 97.7, 94.9, 88.7, 83.4% and 79.0%, respectively, at a concentration of 10 mM. Other compounds producing some inhibition of AZT conjugation were oxazepam, salicylic acid and acetylsalicylic acid. 4. Further studies are necessary to characterise the inhibition observed but the method described enables a screen of potentially important drug interactions to be carried out.
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/enzymology; Microsomes, Liver/metabolism
  6. Ramasamy S, Kiew LV, Chung LY
    Molecules, 2014 Feb 24;19(2):2588-601.
    PMID: 24566323 DOI: 10.3390/molecules19022588
    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.
    Matched MeSH terms: Microsomes, Liver/metabolism
  7. Pertiwi AK, Kwan TK, Gower DB
    J Steroid Biochem Mol Biol, 2002 Aug;81(4-5):363-7.
    PMID: 12361726
    The intracellular movements of pregnenolone in rat testes were investigated. Whole testes were incubated in the presence or absence of pregnenolone (2.5mM) in the medium for 120 min (in some studies 30, 60, and 90 min). The testes were homogenised, subcellular fractions prepared and analysed in quadruplicate for steroid content by gas chromatography-mass spectrometry with selected ion monitoring. Quantification of pregnenolone and 11 of its metabolites, obtained from non-incubated whole testes, provided values for endogenous amounts. Pregnenolone was the only steroid of quantitative importance found initially in the mitochondrial fraction but was subsequently found in the microsomal fraction, where metabolism occurred. Identification and quantification of metabolites indicated that both classical pathways for testosterone production were operating, with the 4-en-3-oxosteroid pathway predominating. By 120 min, virtually all pregnenolone metabolites, including pregnenolone itself, were found in the cytosol, consistent with an overall movement from mitochondria to endoplasmic reticulum to cytosol.
    Matched MeSH terms: Microsomes/metabolism
  8. Pan Y, Mak JW, Ong CE
    Biomed Chromatogr, 2013 Jul;27(7):859-65.
    PMID: 23386533 DOI: 10.1002/bmc.2872
    In this study, a simple and reliable reverse-phase high-performance liquid chromatography (RP-HPLC) method was established and validated to analyze S-mephenytoin 4-hydroxylase activity of a recombinant CYP2C19 system. This system was obtained by co-expressing CYP2C19 and NADPH-CYP oxidoreductase (OxR) proteins in Escherichia coli (E. coli) cells. In addition to RP-HPLC, the expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. The RP-HPLC assay showed good linearity (r(2) = 1.00) with 4-hydroxymephenytoin concentration from 0.100 to 50.0 μm and the limit of detection was 5.00 × 10(-2) μm. Intraday and interday precisions determined were from 1.90 to 8.19% and from 2.20 to 14.9%, respectively. Recovery and accuracy of the assay were from 83.5 to 85.8% and from 95.0 to 105%. Enzyme kinetic parameters (Km , Vmax and Ki ) were comparable to reported values. The presence of CYP2C19 in bacterial membranes was confirmed by immunoblotting and the characteristic absorbance peak at 450 nm was determined in the reduced CO difference spectral assay. Moreover, the activity level of co-expressed OxR was found to be comparable to that of the literature. As a conclusion, the procedures described here have generated catalytically active CYP2C19 and the RP-HPLC assay developed is able to serve as CYP2C19 activity marker for pharmacokinetic drug interaction study in vitro.
    Matched MeSH terms: Microsomes, Liver/metabolism
  9. Obeng S, Kamble SH, Reeves ME, Restrepo LF, Patel A, Behnke M, et al.
    J Med Chem, 2020 01 09;63(1):433-439.
    PMID: 31834797 DOI: 10.1021/acs.jmedchem.9b01465
    Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.
    Matched MeSH terms: Microsomes, Liver/metabolism
  10. Ng ML, Rajna A, Khalid BA
    Clin Chem, 1987 Dec;33(12):2286-8.
    PMID: 3690847
    A combined enzyme immunoassay (micro-ELISA) technique was established for measuring autoantibodies against thyroglobulin and thyroid microsome, involving the immuno-dot blot technique. Thyroglobulin and thyroid microsome antigens (1 g/L each) prepared from normal thyroids were spotted separately onto nitrocellulose membrane filter discs. Results by this method and those by immunofluorescence correlated well. The percentages of confirmed positives were 30% and 48% and the negatives were 58% and 46% (n = 50) for thyroglobulin and microsome, respectively. Testing these samples by gelatin agglutination gave a high percentage of false positives (up to 20%, n = 128) and hemagglutination testing yielded a high percentage of false negatives (up to 20%, n = 45). The titer of autoantibodies by the micro-ELISA technique was greater than by agglutination. This technique is highly specific and sensitive.
    Matched MeSH terms: Microsomes/immunology*
  11. Nesaretnam K, Devasagayam TP, Singh BB, Basiron Y
    Biochem. Mol. Biol. Int., 1993 May;30(1):159-67.
    PMID: 8358328
    The effect of palm oil, a widely used vegetable oil, rich in tocotrienols, on peroxidation potential of rat liver was examined. Long-term feeding of rats with palm oil as one of the dietary components significantly reduced the peroxidation potential of hepatic mitochondria and microsomes. As compared to hepatic mitochondria isolated from rats fed control or corn oil-rich diet, those from palm oil-fed group showed significantly less susceptibility to peroxidation induced by ascorbate and NADPH. However, in microsomes, only NADPH-induced lipid peroxidation was significantly reduced in rats fed palm oil rich-diet. Though the accumulation of thiobarbituric acid reactive substances during ascorbate-induced lipid peroxidation in mitochondria from rats fed corn oil-rich diet supplemented with tocotrienol-rich fraction (TRF) of palm oil was similar to that of control rats, the initial rate of peroxidation was much slower than those from control or corn oil fed diets. Our in vitro studies as well as analyses of co-factors related to peroxidation potential indicated that the observed decrease in palm oil-fed rats may be due to increased amount of antioxidants in terms of tocotrienol as well as decrease in the availability of substrates for peroxidation.
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/metabolism
  12. Muhsain SN, Lang MA, Abu-Bakar A
    Toxicol Appl Pharmacol, 2015 Jan 1;282(1):77-89.
    PMID: 25478736 DOI: 10.1016/j.taap.2014.11.010
    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.
    Matched MeSH terms: Microsomes, Liver/enzymology
  13. Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):647-53.
    PMID: 21044879 DOI: 10.1016/j.jep.2010.10.055
    Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test.
    Matched MeSH terms: Microsomes, Liver/drug effects; Microsomes, Liver/enzymology
  14. Moroi K, Sato T
    Biochem Pharmacol, 1975 Aug 15;24(16):1517-21.
    PMID: 8
    Matched MeSH terms: Microsomes, Liver/enzymology*
  15. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Int J Toxicol, 2022;41(5):355-366.
    PMID: 35658727 DOI: 10.1177/10915818221103790
    Cathine is the stable form of cathinone, the major active compound found in khat (Catha edulis Forsk) plant. Khat was found to inhibit major phase I drug metabolizing cytochrome P450 (CYP) enzyme activities in vitro and in vivo. With the upsurge of khat consumption and the potential use of cathine to combat obesity, efforts should be channelled into understanding potential cathine-drug interactions, which have been rather limited. The present study aimed to assess CYPs activity and inhibition by cathine in a high-throughput in vitro fluorescence-based enzyme assay and molecular docking analysis to identify how cathine interacts within various CYPs' active sites. The half maximal inhibitory concentration (IC50) values of cathine determined for CYP2A6 and CYP3A4 were 80 and 90 μM, while CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2 and CYP3A5 showed no significant inhibition. Furthermore, in Ki analysis, the Lineweaver-Burk plots depicted non-competitive mixed inhibition of cathine on both CYP2A6 and CYP3A4 with Ki value of 63 and 100 μM, respectively. Cathine showed negligible time-dependent inhibition on CYPs. Further, molecular docking studies showed that cathine was bound to CYP2A6 via hydrophobic, hydrogen and π-stacking interactions and formed hydrophobic and hydrogen bonds with active site residues in CYP3A4. Both molecular docking prediction and in vitro outcome are in agreement, granting more detailed insights for predicting CYPs metabolism besides the possible cathine-drug interactions. Cathine-drug interactions may occur with concomitant consumption of khat or cathine-containing products with medications metabolized by CYP2A6 and CYP3A4.
    Matched MeSH terms: Microsomes, Liver/metabolism
  16. Liew KF, Chan KL, Lee CY
    Eur J Med Chem, 2015 Apr 13;94:195-210.
    PMID: 25768702 DOI: 10.1016/j.ejmech.2015.02.055
    A series of novel aurones bearing amine and carbamate functionalities at various positions (rings A and/or B) of the scaffold was synthesized and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Structure-activity relationship study disclosed several potent submicromolar acetylcholinesterase inhibitors (AChEIs) particularly aurones bearing piperidine and pyrrolidine moieties at ring A or ring B. Bulky groups particularly methoxyls, and carbamate to a lesser extent, at either rings were also prominently featured in these AChEI aurones as exemplified by the trimethoxyaurone 4-3. The active aurones exhibited a lower butyrylcholinesterase inhibition. A 3'-chloroaurone 6-3 originally designed to improve the metabolic stability of the scaffold was the most potent of the series. Molecular docking simulations showed these AChEI aurones to adopt favourable binding modes within the active site gorge of the Torpedo californica AChE (TcAChE) including an unusual chlorine-π interaction by the chlorine of 6-3 to establish additional bondings to hydrophobic residues of TcAChE. Evaluation of the potent aurones for their blood-brain barrier (BBB) permeability and metabolic stability using PAMPA-BBB assay and in vitro rat liver microsomes (RLM) identified 4-3 as an aurone with an optimal combination of high passive BBB permeability and moderate CYP450 metabolic stability. LC-MS identification of a mono-hydroxylated metabolite found in the RLM incubation of 4-3 provided an impetus for further improvement of the compound. Thus, 4-3, discovered within this present series is a promising, drug-like lead for the development of the aurones as potential multipotent agents for Alzheimer's disease.
    Matched MeSH terms: Microsomes, Liver/drug effects
  17. Leong SW, Mohd Faudzi SM, Abas F, Mohd Aluwi MF, Rullah K, Lam KW, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3330-7.
    PMID: 26071636 DOI: 10.1016/j.bmcl.2015.05.056
    A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 μM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.
    Matched MeSH terms: Microsomes, Liver/drug effects
  18. Latif IK, Karim AJ, Zuki AB, Zamri-Saad M, Niu JP, Noordin MM
    Poult Sci, 2010 Jul;89(7):1379-88.
    PMID: 20548065 DOI: 10.3382/ps.2009-00622
    Aftermath in several air pollution episodes with high concentrations of polycyclic aromatic hydrocarbons did not significantly affect health and performance of broilers despite its renowned sensitivity to polycyclic aromatic hydrocarbons. The aim of the study was to elucidate the previous lack of response in birds exposed to such severe episodes of air pollution. Benzo[a]pyrene (BaP) was used to simulate the influence of air pollution on hematology, selected organ function, and oxidative stress in broilers. One-day-old chicks were assigned to 5 equal groups composed of a control group, tricaprylin group, and 3 groups treated with BaP (at 1.5 microg, 150 microg, or 15 mg/kg of BW). The BaP was intratracheally administered to 1-d-old chicks for 5 consecutive days. The hematology, liver and kidney function, P450 activity, and malondialdehyde level especially in the group receiving 15 mg of BaP/kg of BW demonstrated evidence of hemato- and hepatoxicity via BaP-induced oxidative stress. The deleterious effect of exposure to high concentration of BaP in broiler chickens was probably due to the anatomy of this species and the half-life of BaP. Although the effect of BaP may be transient or irreversible, pathogen challenges faced during the period of suppression may prove fatal.
    Matched MeSH terms: Microsomes/enzymology; Microsomes/metabolism
  19. Kwan TK, Foong SL, Lim YT, Gower DB
    Biochem. Mol. Biol. Int., 1993 Nov;31(4):733-43.
    PMID: 8298502
    Using the rapid gas chromatographic steroid profiling technique, a number of metabolites of pregnenolone have been separated and quantified after incubation of this steroid with adult rat and neonatal porcine testicular homogenates. It was shown that the 5-ene-3 beta-hydroxy- and the 4-en-3-oxosteroid pathways for androgen biosynthesis were operating in both species, although the former pathway appeared to be more important in porcine testis. This tissue was characterised by the formation of several odorous, and pheromonal, 16-androstenes, which were quantitatively more important than the androgens. Three non-steroidal anti-inflammatory drugs (NSAIDS) caused dose-related inhibition of androgen and 16-androstene biosynthesis when co-incubated with pregnenolone. The order of potency was flurbiprofen > indomethacin > > > aspirin. The possibility that the NSAIDS may interfere with cytochrome P-450 is discussed, since several steroid-transforming enzymes, known to be dependent on this cytochrome for their activity, were markedly inhibited.
    Matched MeSH terms: Microsomes/drug effects; Microsomes/metabolism
  20. Kwan TK, Poh CH, Perumal R, Gower DB
    Biochem. Int., 1988 Nov;17(5):885-94.
    PMID: 3254165
    The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.
    Matched MeSH terms: Microsomes/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links