Displaying all 19 publications

Abstract:
Sort:
  1. Panda BB, Mohanty I, Rath A, Pradhan N, Hazra RK
    Trop Biomed, 2019 Sep 01;36(3):610-619.
    PMID: 33597483
    India contributes substantially to global malaria incidents. Vector dynamics is the significant determinant of malaria risk. Hence, knowledge on the interaction between rainfall, malaria cases and malaria vector density can be very useful for controlling malaria transmission. Kalahandi was screened for malaria cases, Anopheline vector density and their temporal relationship with rainfall. Epidemiological data was obtained from National Vector Borne Disease Control Programme, Odisha, India. Three years vector population study was carried out. Rainfall data was obtained from a database maintained by the Govt. of Odisha and was analysed using Univariate ANOVA and Pearson correlation co-efficient tests using R-prog. Malaria was found to be prevalent throughout the year attaining peak between July to August and another peak in December, amidst which the clinical malaria cases being recorded implied highest incidents in the month of July. The results estimated the seasonality of the population of An. culicifacies, An. fluviatilis and An. annularis over the region and determined the influence of rainfall on the vector population dynamics. Simple linear regression analysis suggested that at one month lag monthly rainfall (P=0.0007) was a significant meteorological factor. Rainfall seemed to be one of the best malaria predictors because of its positive correlation with proliferation of malaria cases in conjunction with An. culicifacies density making malaria a serious health issue in Kalahandi.
    Matched MeSH terms: Mosquito Vectors/parasitology
  2. Pramasivan S, Ngui R, Jeyaprakasam NK, Low VL, Liew JWK, Vythilingam I
    Parasit Vectors, 2023 Oct 09;16(1):355.
    PMID: 37814287 DOI: 10.1186/s13071-023-05984-x
    BACKGROUND: Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia.

    METHODS: Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables.

    RESULTS: Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak.

    CONCLUSION: The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.

    Matched MeSH terms: Mosquito Vectors/parasitology
  3. Jeyaprakasam NK, Low VL, Pramasivan S, Liew JWK, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011438.
    PMID: 37384790 DOI: 10.1371/journal.pntd.0011438
    BACKGROUND: The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.

    CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.

    Matched MeSH terms: Mosquito Vectors/parasitology
  4. Vythilingam I, Wong ML, Wan-Yussof WS
    Parasitology, 2018 01;145(1):32-40.
    PMID: 27222102 DOI: 10.1017/S0031182016000901
    Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.
    Matched MeSH terms: Mosquito Vectors/parasitology
  5. Abagli AZ, Alavo TBC
    Trop Biomed, 2019 Dec 01;36(4):1003-1013.
    PMID: 33597470
    Cx. quinquefasciatus is a common nuisance mosquito widely distributed in tropical and subtropical areas. This mosquito is also a vector of urban filariasis. Control with chemicals has been hampered by the development of resistance against chemical insecticides and rising problems of environmental contamination associated with them. Therefore, it is important to adopt more integrated mosquito management approaches that include sustainable, non chemical solutions. The mermithid nematode Romanomermis iyengari is one of several natural control alternatives to synthetic pesticides for mosquito suppression. This study evaluated the effectiveness of the nematode R. iyengari for control of Cx. quinquefasciatus. The nematode R. iyengari was mass-produced, and pre-parasitics (J2) were used for laboratory and field experiments. In laboratory experiments, two concentrations of pre-parasitics (5 and 10 J2 per larva) were tested against L1, L2 and L3 instars larvae of Cx. quinquefasciatus. Infected larvae were observed daily to determine their mortality rate and the number of postparasitic nematodes emerging from dead larvae. In field experiments, 1000, 2000 and 3000 J2/m2 were sprayed in separate natural Cx. quinquefasciatus breeding sites. After treatment, the larval mosquito density in the breeding sites was assessed every 5 days. Laboratory results showed that all tested Cx. quinquefasciatus instars larvae were susceptible to nematode infection. The mortality rates observed for each larval stage indicated that the concentration of 10 J2 kills larvae faster, and that the L1 larvae died earlier than older larvae. The average number of post-parasitic nematodes emerging per larva increases with increasing nematode concentration; also more post-parasitic nematodes emerged from the L2 larvae. Field data showed that, in breeding site treated with 3000 J2 per square meter, larval mosquito reduction reached 97% after nematode application. The dosage of 1000 J2 per square meter did not reduce the larval density. The insect parasitic nematode R. iyengari could be easily used as component of integrated mosquitoes control program in lymphatic filariasis endemic countries.
    Matched MeSH terms: Mosquito Vectors/parasitology
  6. Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ
    Parasit Vectors, 2019 Jul 25;12(1):364.
    PMID: 31345256 DOI: 10.1186/s13071-019-3627-0
    BACKGROUND: We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types.

    RESULTS: A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species.

    CONCLUSIONS: The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.

    Matched MeSH terms: Mosquito Vectors/parasitology
  7. Kittiwattanawong K, Ponlawat A, Boonrotpong S, Nanakorn N, Kongchouy N, Moonmake S, et al.
    Trop Biomed, 2020 Jun 01;37(2):397-408.
    PMID: 33612809
    The Anopheles dirus mosquito is a primary malaria vector that transmits many species of Plasmodium parasites in Thailand and is widely spread across its geographic area. In the current study, the levels of expression of the suppressor of cytokine signaling (SOCS) gene in An. dirus mosquitoes infected with P. vivax were examined. The level of the gene's expression determined by mRNA extraction in An. dirus females (n=2,400) was studied at different times (0, 12, 24, 36, and 48 h after feeding), with different types of blood feeding (non-feeding, parasite-negative blood feeding, parasite-positive blood feeding) and in different parts of the body of mosquito samples (thorax and abdomen). The datasets were analyzed based on their relative expression ratio by the 2-ΔΔCT method and were tested for significant differences with ANOVA. The results showed that the An. dirus SOCS gene was stimulated in the abdomen 12 h and 24 h after blood feeding about three times more highly than in unfed females, with the difference being significant. At 24 h after P. vivax-infected blood feeding, the SOCS gene in the abdomen was expressed more highly than 24 h after parasite-negative blood feeding and expression was almost 36 times higher than in the control group who were not fed blood. However, in the thorax at all times after feeding and non-feeding, there was no expression of the SOCS gene. Therefore, the SOCS gene in An. dirus was most highly expressed 24 h post-feeding with a P. vivax-infected bloodmeal, which indicates that the SOCS gene in the major malaria vector in Thailand plays an important role in its immune system and its response to P. vivax infection.
    Matched MeSH terms: Mosquito Vectors/parasitology
  8. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P Mosquito Magnet has a promising ability to catch An. introlatus and An. cracens, the important vectors of knowlesi and other simian malarias in Peninsular Malaysia. The ability of Mosquito Magnet to catch some of the Anopheles mosquito species is comparable to HLC and makes it an ethical and safer alternative.

    Matched MeSH terms: Mosquito Vectors/parasitology*
  9. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

    Matched MeSH terms: Mosquito Vectors/parasitology*
  10. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
    Matched MeSH terms: Mosquito Vectors/parasitology*
  11. Vythilingam I, Jeyaprakasam NK
    Acta Trop, 2024 Sep;257:107280.
    PMID: 38908421 DOI: 10.1016/j.actatropica.2024.107280
    Malaria continues to be a global public health problem although it has been eliminated from many countries. Sri Lanka and China are two countries that recently achieved malaria elimination status, and many countries in Southeast Asia are currently in the pipeline for achieving the same goal by 2030. However, Plasmodium knowlesi, a non-human primate malaria parasite continues to pose a threat to public health in this region, infecting many humans in all countries in Southeast Asia except for Timor-Leste. Besides, other non-human primate malaria parasite such as Plasmodium cynomolgi and Plasmodium inui are infecting humans in the region. The non-human primates, the long-tailed and pig-tailed macaques which harbour these parasites are now increasingly prevalent in farms and forest fringes close by to the villages. Additionally, the Anopheles mosquitoes belonging to the Lecuosphyrus Group are also present in these areas which makes them ideal for transmitting the non-human primate malaria parasites. With changing landscape and deforestation, non-human primate malaria parasites will affect more humans in the coming years with the elimination of human malaria. Perhaps due to loss of immunity, more humans will be infected as currently being demonstrated in Malaysia. Thus, control measures need to be instituted rapidly to achieve the malaria elimination status by 2030. However, the zoonotic origin of the parasite and the changes of the vectors behaviour to early biting seems to be the stumbling block to the malaria elimination efforts in this region. In this review, we discuss the challenges faced in malaria elimination due to deforestation and the serious threat posed by non-human primate malaria parasites.
    Matched MeSH terms: Mosquito Vectors/parasitology
  12. Brown R, Chua TH, Fornace K, Drakeley C, Vythilingam I, Ferguson HM
    PLoS Negl Trop Dis, 2020 09;14(9):e0008617.
    PMID: 32886679 DOI: 10.1371/journal.pntd.0008617
    The zoonotic malaria parasite, Plasmodium knowlesi, is now a substantial public health problem in Malaysian Borneo. Current understanding of P. knowlesi vector bionomics and ecology in Sabah comes from a few studies near the epicentre of human cases in one district, Kudat. These have incriminated Anopheles balabacensis as the primary vector, and suggest that human exposure to vector biting is peri-domestic as well as in forest environments. To address the limited understanding of vector ecology and human exposure risk outside of Kudat, we performed wider scale surveillance across four districts in Sabah with confirmed transmission to investigate spatial heterogeneity in vector abundance, diversity and infection rate. Entomological surveillance was carried out six months after a cross-sectional survey of P. knowlesi prevalence in humans throughout the study area; providing an opportunity to investigate associations between entomological indicators and infection. Human-landing catches were performed in peri-domestic, farm and forest sites in 11 villages (3-4 per district) and paired with estimates of human P. knowlesi exposure based on sero-prevalence. Anopheles balabacensis was present in all districts but only 6/11 villages. The mean density of An. balabacensis was relatively low, but significantly higher in farm (0.094/night) and forest (0.082/night) than peri-domestic areas (0.007/night). Only one An. balabacensis (n = 32) was infected with P. knowlesi. Plasmodium knowlesi sero-positivity in people was not associated with An. balabacensis density at the village-level however post hoc analyses indicated the study had limited power to detect a statistical association due low vector density. Wider scale sampling revealed substantial heterogeneity in vector density and distribution between villages and districts. Vector-habitat associations predicted from this larger-scale surveillance differed from those inferred from smaller-scale studies in Kudat; highlighting the importance of local ecological context. Findings highlight potential trade-offs between maximizing temporal versus spatial breadth when designing entomological surveillance; and provide baseline entomological and epidemiological data to inform future studies of entomological risk factors for human P. knowlesi infection.
    Matched MeSH terms: Mosquito Vectors/parasitology*
  13. Krishnan J, Mathiarasan L
    J Vector Borne Dis, 2019 1 9;55(3):189-196.
    PMID: 30618444 DOI: 10.4103/0972-9062.249127
    Background & objectives: : Increase of vector-borne diseases (VBDs) in India has posed a question on the situation in Lakshadweep Islands, where VBDs are reported from time-to-time. The present investigation was aimed to assess the faunastic situation of the prevailing vectors along with their breeding sites in different islands of the Lakshadweep.

    Methods: : Extensive surveys were carried out from November 2017 to January 2018 (post-monsoon season) randomly in the nine inhabited islands of Lakshadweep for conducting faunastic studies on mosquitoes and to know the basic binomics like breeding and resting preference of mosquitoes. The study islands included, Kavaratti, Agatti, Chetlat, Bitra, Amini, Kadmath, Andrott, Kalpeni and Kiltan. Both immature and adult collections were carried out by standard/appropriate sampling techniques. The obtained data were calculated and analysed in terms of different entomological indices.

    Results: : A total of 3356 mosquitoes were collected during the study period which comprised of 16 species from nine genera. Out of the 16 species, six belonged to mosquito vectors. The collection included malaria vector, Anopheles stephensi; Japanese encephalitis vector, Culex tritaeniorhynchus; Bancroftian filariasis vector, Cx. quinquefasciatus; Brugian filariasis vector, Mansonia uniformis; and dengue and chikungunya vectors, Stegomya albopicta and St. aegypti. Stegomya albopicta was the most predominant species observed constituting 54% of the catch, followed by Cx. quinquefasciatus, An. stephensi, Cx. tritaeniorhynchus, and St. aegypti constituting 10.5, 6, 3 and 1.2%, respectively. Apart from vector species many non-vectors such as Heizmannia chandi, An. subpictus, An. varuna, Cx. sitiens, Cx. minutissimus, Cx. rubithoracis, Fredwardsius vittatus, Lutzia fuscana, Malaya genurostris and Armigeres subalbatus were also present in the study area. In Kavaratti Island, the capital of Lakshadweep, a non-vector species of sandfly, Sergentomyia (Parrotomyia) babu was observed during the indoor resting collection. The major breeding sites which supported various mosquito species included, discarded plastic containers, tree holes, open sintex tanks (water storage tanks), unused wells, discarded tyres, discarded iron pots, unused and damaged boats, cement tanks, pleated plastic sheets, coral holes, pits and irrigation canals, discarded washing machines, and Colocasia plant leaf axils. Breteau index ranged between 65.3 and 110, CI ranged between 63.64 and 72.41; and HI ranged between 38.46 and 70 among the various islands.

    Interpretation & conclusion: : Entomological indices such as house index (HI), breteau index (BI) and pupal index (PI) were high in all the nine islands and exceeded the threshold levels specified by WHO, indicating high risk for dengue virus transmission in case of outbreaks. Occurrence of vector as well as non-vector species indicates that the global change in climate is causing notable changes in terms of breeding of vector and non-vector species in the islands. With the reported cases of VBDs and the presence of vectors species in Lakshadweep Islands, a stringent control measure needs to be implemented at the Lakshadweep Islands.

    Matched MeSH terms: Mosquito Vectors/parasitology*
  14. Özbilgin A, Çavuş İ, Yıldırım A, Gündüz C
    Mikrobiyol Bul, 2016 Jul;50(3):484-90.
    PMID: 27525405
    Plasmodium knowlesi is now added to the known four Plasmodium species (P.vivax, P.falciparum, P.malariae, P.ovale) as a cause of malaria in humans because of the recent increasing rate of cases reported from countries of southeastern Asia. P.knowlesi which infects macaque monkeys (Macaca fascicularis and M.nemestrina) is transmitted to humans especially by Anopheles leucosphyrus and An.hackeri mosquitos. First human cases of P.knowlesi malaria have been detected in Malaysia which have reached high numbers in recent years and also have been reported from countries of Southeast Asia such as Thailand, Philippines, Myanmar, Singapore and Vietnam. However the number of cases reported from western countries are rare and limited only within voyagers. This report is the first presentation of an imported case of P.knowlesi malaria in Turkey and aims to draw attention to the point that it could also be detected in future. A 33-year-old male patient from Myanmar who has migrated to Turkey as a refugee, was admitted to a health center with the complaints of fever with a periodicity of 24 hours, headache, fatigue, cough, sore throat, anorexia, myalgia and arthralgia. He was prediagnosed as upper respiratory tract infection, however because of his periodical fever and background in Myanmar, thick and thin blood films were prepared and sent to our laboratory for further examinations. Microscopic examination of the thin blood films revealed erythrocytic stages compatible with P.knowlesi (three large early trophozoites in an erythrocyte, three late trophozoites with compact view, and three late band-form trophozoites). Upon this, both real-time polymerase chain reaction (Rt-PCR) targeting the small subunit ribosomal RNA (SSU-rRNA) genes of Plasmodium genus and DNA sequence analysis targeting P.knowlesi rRNA gene were performed. As a result, the suspected identification of P.knowlesi by microscopy was confirmed by Rt-PCR and DNA sequencing. The patient was treated with chloroquine and primaquine combination and in the follow-up on the seventh day after the treatment, his parasitemia and symptoms had ceased. Although there were some previous reports concerning about imported patients infected with different Plasmodium species in our country, no cases of P.knowlesi have been reported. This first case presented here emphasizes the occurence of P.knowlesi malaria in Turkey hereinafter due to the increasing number of refugees.
    Matched MeSH terms: Mosquito Vectors/parasitology
  15. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
    Matched MeSH terms: Mosquito Vectors/parasitology
  16. Malijan RPB, Mechan F, Braganza JC, Valle KMR, Salazar FV, Torno MM, et al.
    Parasit Vectors, 2021 Jul 07;14(1):357.
    PMID: 34233742 DOI: 10.1186/s13071-021-04853-9
    BACKGROUND: A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island.

    METHODS: The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR.

    RESULTS: Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive.

    CONCLUSIONS: The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors.

    Matched MeSH terms: Mosquito Vectors/parasitology*
  17. Ismail BA, Kafy HT, Sulieman JE, Subramaniam K, Thomas B, Mnzava A, et al.
    Parasit Vectors, 2018 03 02;11(1):122.
    PMID: 29499751 DOI: 10.1186/s13071-018-2732-9
    BACKGROUND: Long-lasting insecticidal nets (LLINs) (with pyrethroids) and indoor residual spraying (IRS) are the cornerstones of the Sudanese malaria control program. Insecticide resistance to the principal insecticides in LLINs and IRS is a major concern. This study was designed to monitor insecticide resistance in Anopheles arabiensis from 140 clusters in four malaria-endemic areas of Sudan from 2011 to 2014. All clusters received LLINs, while half (n = 70), distributed across the four regions, had additional IRS campaigns.

    METHODS: Anopheles gambiae (s.l.) mosquitoes were identified to species level using PCR techniques. Standard WHO insecticide susceptibility bioassays were carried out to detect resistance to deltamethrin (0.05%), DDT (4%) and bendiocarb (0.1%). TaqMan assays were performed on random samples of deltamethrin-resistant phenotyped and pyrethrum spray collected individuals to determine Vgsc-1014 knockdown resistance mutations.

    RESULTS: Anopheles arabiensis accounted for 99.9% of any anopheline species collected across all sites. Bioassay screening indicated that mosquitoes remained susceptible to bendiocarb but were resistance to deltamethrin and DDT in all areas. There were significant increases in deltamethrin resistance over the four years, with overall mean percent mortality to deltamethrin declining from 81.0% (95% CI: 77.6-84.3%) in 2011 to 47.7% (95% CI: 43.5-51.8%) in 2014. The rate of increase in phenotypic deltamethrin-resistance was significantly slower in the LLIN + IRS arm than in the LLIN-only arm (Odds ratio 1.34; 95% CI: 1.02-1.77). The frequency of Vgsc-1014F mutation varied spatiotemporally with highest frequencies in Galabat (range 0.375-0.616) and New Halfa (range 0.241-0.447). Deltamethrin phenotypic-resistance correlated with Vgsc-1014F frequency.

    CONCLUSION: Combining LLIN and IRS, with different classes of insecticide, may delay pyrethroid resistance development, but the speed at which resistance develops may be area-specific. Continued monitoring is vital to ensure optimal management and control.

    Matched MeSH terms: Mosquito Vectors/parasitology
  18. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Mosquito Vectors/parasitology
  19. Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, et al.
    G3 (Bethesda), 2017 06 07;7(6):1819-1832.
    PMID: 28428243 DOI: 10.1534/g3.117.040147
    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies.
    Matched MeSH terms: Mosquito Vectors/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links