Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Qi H, Huang G, Han Y, Zhang X, Li Y, Pingguan-Murphy B, et al.
    Tissue Eng Part B Rev, 2015 Jun;21(3):288-97.
    PMID: 25547514 DOI: 10.1089/ten.TEB.2014.0494
    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
    Matched MeSH terms: Nucleic Acid Conformation*
  2. Ong HS, Rahim MS, Firdaus-Raih M, Ramlan EI
    PLoS One, 2015;10(8):e0134520.
    PMID: 26258940 DOI: 10.1371/journal.pone.0134520
    The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner.
    Matched MeSH terms: Nucleic Acid Conformation*
  3. Munyati-Othman N, Appasamy SD, Damiri N, Emrizal R, Alipiah NM, Ramlan EI, et al.
    Curr Microbiol, 2021 Aug;78(8):2943-2955.
    PMID: 34076709 DOI: 10.1007/s00284-021-02550-5
    The glycine riboswitch is a known regulatory element that is unique in having two aptamers that are joined by a linker region. In this study, we investigated a glycine riboswitch located in the 5' untranslated region of a glycine cleavage system homolog (gcvTHP) in Burkholderia spp. Structure prediction using the sequence generated a model with a glycine binding pocket composed of base-triple interactions (G62-A64-A86 and G65-U84-C85) that are supported by A/G minor interactions (A17-C60-G88 and G16-C61-G87, respectively) and two ribose-zipper motifs (C11-G12 interacting with A248-A247 and C153-U154 interacting with A79-A78) which had not been previously reported. The capacity of the riboswitch to bind to glycine was experimentally validated by native gel assays and the crucial role of interactions that make up the glycine binding pocket were proven by mutations of A17U and G16C which resulted in conformational differences that may lead to dysfunction. Using glycine supplemented minimal media, we were able to prove that the expression of the gcvTHP genes found downstream of the riboswitch responded to the glycine concentrations introduced thus confirming the role of this highly conserved Burkholderia riboswitch and its associated genes as a putative glycine detoxification system in Burkholderia spp.
    Matched MeSH terms: Nucleic Acid Conformation
  4. Firdaus-Raih M, Hamdani HY, Nadzirin N, Ramlan EI, Willett P, Artymiuk PJ
    Nucleic Acids Res, 2014 Jul;42(Web Server issue):W382-8.
    PMID: 24831543 DOI: 10.1093/nar/gku438
    Hydrogen bonds are crucial factors that stabilize a complex ribonucleic acid (RNA) molecule's three-dimensional (3D) structure. Minute conformational changes can result in variations in the hydrogen bond interactions in a particular structure. Furthermore, networks of hydrogen bonds, especially those found in tight clusters, may be important elements in structure stabilization or function and can therefore be regarded as potential tertiary motifs. In this paper, we describe a graph theoretical algorithm implemented as a web server that is able to search for unbroken networks of hydrogen-bonded base interactions and thus provide an accounting of such interactions in RNA 3D structures. This server, COGNAC (COnnection tables Graphs for Nucleic ACids), is also able to compare the hydrogen bond networks between two structures and from such annotations enable the mapping of atomic level differences that may have resulted from conformational changes due to mutations or binding events. The COGNAC server can be accessed at http://mfrlab.org/grafss/cognac.
    Matched MeSH terms: Nucleic Acid Conformation
  5. Appasamy SD, Hamdani HY, Ramlan EI, Firdaus-Raih M
    Nucleic Acids Res, 2016 Jan 4;44(D1):D266-71.
    PMID: 26553798 DOI: 10.1093/nar/gkv1186
    A major component of RNA structure stabilization are the hydrogen bonded interactions between the base residues. The importance and biological relevance for large clusters of base interactions can be much more easily investigated when their occurrences have been systematically detected, catalogued and compared. In this paper, we describe the database InterRNA (INTERactions in RNA structures database-http://mfrlab.org/interrna/) that contains records of known RNA 3D motifs as well as records for clusters of bases that are interconnected by hydrogen bonds. The contents of the database were compiled from RNA structural annotations carried out by the NASSAM (http://mfrlab.org/grafss/nassam) and COGNAC (http://mfrlab.org/grafss/cognac) computer programs. An analysis of the database content and comparisons with the existing corpus of knowledge regarding RNA 3D motifs clearly show that InterRNA is able to provide an extension of the annotations for known motifs as well as able to provide novel interactions for further investigations.
    Matched MeSH terms: Nucleic Acid Conformation
  6. Ghani NSA, Emrizal R, Moffit SM, Hamdani HY, Ramlan EI, Firdaus-Raih M
    Nucleic Acids Res, 2022 Jul 05;50(W1):W375-W383.
    PMID: 35639505 DOI: 10.1093/nar/gkac402
    The GrAfSS (Graph theoretical Applications for Substructure Searching) webserver is a platform to search for three-dimensional substructures of: (i) amino acid side chains in protein structures; and (ii) base arrangements in RNA structures. The webserver interfaces the functions of five different graph theoretical algorithms - ASSAM, SPRITE, IMAAAGINE, NASSAM and COGNAC - into a single substructure searching suite. Users will be able to identify whether a three-dimensional (3D) arrangement of interest, such as a ligand binding site or 3D motif, observed in a protein or RNA structure can be found in other structures available in the Protein Data Bank (PDB). The webserver also allows users to determine whether a protein or RNA structure of interest contains substructural arrangements that are similar to known motifs or 3D arrangements. These capabilities allow for the functional annotation of new structures that were either experimentally determined or computationally generated (such as the coordinates generated by AlphaFold2) and can provide further insights into the diversity or conservation of functional mechanisms of structures in the PDB. The computed substructural superpositions are visualized using integrated NGL viewers. The GrAfSS server is available at http://mfrlab.org/grafss/.
    Matched MeSH terms: Nucleic Acid Conformation
  7. Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS
    Molecules, 2019 Mar 19;24(6).
    PMID: 30893817 DOI: 10.3390/molecules24061079
    G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
    Matched MeSH terms: Nucleic Acid Conformation
  8. Ahammed KS, Pachal S, Majumdar P, Dutta S
    Chembiochem, 2023 Apr 17;24(8):e202200715.
    PMID: 36747378 DOI: 10.1002/cbic.202200715
    The dynamic topological states of chromosomal DNA regulate many cellular fundamental processes universally in all three domains of life, that is, bacteria, archaea, and eukaryotes. DNA-binding proteins maintain the regional and global supercoiling of the chromosome and thereby regulate the chromatin architecture that ultimately influences the gene expression network and other DNA-centric molecular events in various microenvironments and growth phases. DNA-binding small molecules are pivotal weapons for treating a wide range of cancers. Recent advances in single-molecule biophysical tools have uncovered the fact that many DNA-binding ligands not only alter the regional DNA supercoiling but also modulate the overall morphology of DNA. Here we provide insight into recent advances in atomic force microscopy (AFM) acquired DNA structural change induced by therapeutically important mono- and bis-intercalating anticancer agents as well as DNA-adduct-forming anticancer drugs. We also emphasize the growing evidence of the mechanistic relevance of changes in DNA topology in the anticancer cellular responses of DNA-targeting chemotherapeutic agents.
    Matched MeSH terms: Nucleic Acid Conformation
  9. Tieng FYF, Abdullah-Zawawi MR, Md Shahri NAA, Mohamed-Hussein ZA, Lee LH, Mutalib NA
    Brief Bioinform, 2023 Nov 22;25(1).
    PMID: 38040490 DOI: 10.1093/bib/bbad421
    RNA biology has risen to prominence after a remarkable discovery of diverse functions of noncoding RNA (ncRNA). Most untranslated transcripts often exert their regulatory functions into RNA-RNA complexes via base pairing with complementary sequences in other RNAs. An interplay between RNAs is essential, as it possesses various functional roles in human cells, including genetic translation, RNA splicing, editing, ribosomal RNA maturation, RNA degradation and the regulation of metabolic pathways/riboswitches. Moreover, the pervasive transcription of the human genome allows for the discovery of novel genomic functions via RNA interactome investigation. The advancement of experimental procedures has resulted in an explosion of documented data, necessitating the development of efficient and precise computational tools and algorithms. This review provides an extensive update on RNA-RNA interaction (RRI) analysis via thermodynamic- and comparative-based RNA secondary structure prediction (RSP) and RNA-RNA interaction prediction (RIP) tools and their general functions. We also highlighted the current knowledge of RRIs and the limitations of RNA interactome mapping via experimental data. Then, the gap between RSP and RIP, the importance of RNA homologues, the relationship between pseudoknots, and RNA folding thermodynamics are discussed. It is hoped that these emerging prediction tools will deepen the understanding of RNA-associated interactions in human diseases and hasten treatment processes.
    Matched MeSH terms: Nucleic Acid Conformation
  10. Pirojsirikul T, Lee VS, Nimmanpipug P
    Mol Biotechnol, 2024 Apr;66(4):582-591.
    PMID: 38374320 DOI: 10.1007/s12033-024-01082-0
    We utilized molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) free energy calculations to investigate the specificity of two oligonucleotide probes, namely probe B and probe D, in detecting single-stranded DNA (ssDNA) within three bacteria families: Enterobacteriaceae, Pasteurellaceae, and Vibrionaceae. Due to the limited understanding of molecular mechanisms in the previous research, we have extended the discussion to focus specifically on investigating the binding process of bacteria-probe DNA duplexes, with an emphasis on analyzing the binding free energy. The role of electrostatic contributions in the specificity between the oligonucleotide probes and the bacterial ssDNAs was investigated and found to be crucial. Our calculations yielded results that were highly consistent with the experimental data. Through our study, we have successfully exhibited the benefits of utilizing in-silico approaches as a powerful virtual-screening tool, particularly in research areas that demand a thorough comprehension of molecular interactions.
    Matched MeSH terms: Nucleic Acid Conformation
  11. Appasamy SD, Ramlan EI, Firdaus-Raih M
    PLoS One, 2013;8(9):e73984.
    PMID: 24040136 DOI: 10.1371/journal.pone.0073984
    The tertiary motifs in complex RNA molecules play vital roles to either stabilize the formation of RNA 3D structure or to provide important biological functionality to the molecule. In order to better understand the roles of these tertiary motifs in riboswitches, we examined 11 representative riboswitch PDB structures for potential agreement of both motif occurrences and conservations. A total of 61 unique tertiary interactions were found in the reference structures. In addition to the expected common A-minor motifs and base-triples mainly involved in linking distant regions the riboswitch structures three highly conserved variants of A-minor interactions called G-minors were found in the SAM-I and FMN riboswitches where they appear to be involved in the recognition of the respective ligand's functional groups. From our structural survey as well as corresponding structure and sequence alignments, the agreement between motif occurrences and conservations are very prominent across the representative riboswitches. Our analysis provide evidence that some of these tertiary interactions are essential components to form the structure where their sequence positions are conserved despite a high degree of diversity in other parts of the respective riboswitches sequences. This is indicative of a vital role for these tertiary interactions in determining the specific biological function of riboswitch.
    Matched MeSH terms: Nucleic Acid Conformation*
  12. Ramlan EI, Zauner KP
    Biosystems, 2011 Jul;105(1):14-24.
    PMID: 21396427 DOI: 10.1016/j.biosystems.2011.02.006
    Despite an exponential increase in computing power over the past decades, present information technology falls far short of expectations in areas such as cognitive systems and micro robotics. Organisms demonstrate that it is possible to implement information processing in a radically different way from what we have available in present technology, and that there are clear advantages from the perspective of power consumption, integration density, and real-time processing of ambiguous data. Accordingly, the question whether the current silicon substrate and associated computing paradigm is the most suitable approach to all types of computation has come to the fore. Macromolecular materials, so successfully employed by nature, possess uniquely promising properties as an alternate substrate for information processing. The two key features of macromolecules are their conformational dynamics and their self-assembly capabilities. The purposeful design of macromolecules capable of exploiting these features has proven to be a challenge, however, for some groups of molecules it is increasingly practicable. We here introduce an algorithm capable of designing groups self-assembling of nucleic acid molecules with multiple conformational states. Evaluation using natural and artificially designed nucleic acid molecules favours this algorithm significantly, as compared to the probabilistic approach. Furthermore, the thermodynamic properties of the generated candidates are within the same approximation as the customised trans-acting switching molecules reported in the laboratory.
    Matched MeSH terms: Nucleic Acid Conformation*
  13. Hamdani HY, Appasamy SD, Willett P, Artymiuk PJ, Firdaus-Raih M
    Nucleic Acids Res, 2012 Jul;40(Web Server issue):W35-41.
    PMID: 22661578 DOI: 10.1093/nar/gks513
    Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/.
    Matched MeSH terms: Nucleic Acid Conformation
  14. Al-Khatib RM, Rashid NA, Abdullah R
    J Biomol Struct Dyn, 2011 Aug;29(1):1-26.
    PMID: 21696223
    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.
    Matched MeSH terms: Nucleic Acid Conformation
  15. New SY, Lee ST, Su XD
    Nanoscale, 2016 Oct 20;8(41):17729-17746.
    PMID: 27722695
    12 years after the introduction of DNA-templated silver nanoclusters (DNA-AgNCs), exciting progress has been made and yet we are still in the midst of trying to fully understand this nanomaterial. The prominent excellence of DNA-AgNCs is undoubtedly its modulatable emission property, of which how variation in DNA templates causes emission tuning remains elusive. Based on the up-to-date DNA-AgNCs, we aim to establish the correlation between the structure/sequence of DNA templates and emission behaviour of AgNCs. Herein, we systematically present a wide-range of DNA-AgNCs based on the structural complexity of the DNA templates, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), triple-stranded DNA (tsDNA) and DNA nanostructures. For each DNA category, we discuss the emission property, quantum yield and synthesis condition of the respective AgNCs, before cross-comparing the impact of different DNA scaffolds on the properties of AgNCs. A future outlook for this area is given as a conclusion. By putting the information together, this review may shed new light on understanding DNA-AgNCs while we are expecting continuous breakthroughs in this field.
    Matched MeSH terms: Nucleic Acid Conformation
  16. Yunus MA, Lin X, Bailey D, Karakasiliotis I, Chaudhry Y, Vashist S, et al.
    J Virol, 2015 Jan 15;89(2):1218-29.
    PMID: 25392209 DOI: 10.1128/JVI.02432-14
    All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter.

    IMPORTANCE: Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.

    Matched MeSH terms: Nucleic Acid Conformation*
  17. Tan JL, Ngeow YF, Wee WY, Wong GJ, Ng HF, Choo SW
    Sci Rep, 2014;4:7169.
    PMID: 25417557 DOI: 10.1038/srep07169
    Mycobacterium iranicum is a newly reported mycobacterial species. We present the first comparative study of M. iranicum UM_TJL and other mycobacteria. We found M. iranicum to have a close genetic association with environmental mycobacteria infrequently associated with human infections. Nonetheless, UM_TJL is also equipped with many virulence genes (some of which appear to be the consequence of transduction-related gene transfer) that have been identified in established human pathogens. Taken all together, our data suggest that M. iranicum is an environmental bacterium adapted for pathogenicity in the human host. This comparative study provides important clues and forms the basis for future functional studies on this mycobacterium.
    Matched MeSH terms: Nucleic Acid Conformation
  18. Jumbri K, Abdul Rahman MB, Abdulmalek E, Ahmad H, Micaelo NM
    Phys Chem Chem Phys, 2014 Jul 21;16(27):14036-46.
    PMID: 24901033 DOI: 10.1039/c4cp01159g
    Molecular dynamics simulation and biophysical analysis were employed to reveal the characteristics and the influence of ionic liquids (ILs) on the structural properties of DNA. Both computational and experimental evidence indicate that DNA retains its native B-conformation in ILs. Simulation data show that the hydration shells around the DNA phosphate group were the main criteria for DNA stabilization in this ionic media. Stronger hydration shells reduce the binding ability of ILs' cations to the DNA phosphate group, thus destabilizing the DNA. The simulation results also indicated that the DNA structure maintains its duplex conformation when solvated by ILs at different temperatures up to 373.15 K. The result further suggests that the thermal stability of DNA at high temperatures is related to the solvent thermodynamics, especially entropy and enthalpy of water. All the molecular simulation results were consistent with the experimental findings. The understanding of the properties of IL-DNA could be used as a basis for future development of specific ILs for nucleic acid technology.
    Matched MeSH terms: Nucleic Acid Conformation
  19. Majid AM, Smythe G, Denny WA, Wakelin LP
    Mol. Pharmacol., 2007 Apr;71(4):1165-78.
    PMID: 17251328
    Nitrogen mustard alkylating agents are important cancer drugs. Much interest has been focused on redirecting their covalent adducts from the N7 atoms of guanine in the major groove of DNA to the N3 atoms of adenine in the minor groove by attaching mustard groups to AT-selective minor groove binding ligands. Here we describe the use of electrospray ionization and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry to study the structure of the DNA complexes of two minor groove binding polybenzamide mustards, alkamin and alkamini; the former is a bis-half-mustard in which reactive groups are disposed at each end of the ligand, and the latter is its monofunctional analog. Alkamin is potently cytotoxic and active in experimental mouse tumor models, whereas alkamini is not. We have studied their interaction with the DNA dodecamer d(CGCGAATTCGCG)(2), designated A2T2, and we provide a detailed analysis of the observed DNA-ligand adduct ions and their fragmentation products. We find that alkamini alkylates A2T2 at guanine G4 and adenines A5 and A6 in a manner consistent with covalent attack on purine N3 atoms from the minor groove of the AT tract. Alkamin also forms monofunctional adducts at G4 and both adenines in which the second mustard arm is hydrolyzed but, in addition, forms a variety of interstrand cross-links between adenines A5/A6 and A5'/A6', an interstrand cross-link between G4 and A6', and an intrastrand cross-link between G4 and A6. We conclude that the marked cytotoxicity of alkamin and its experimental antitumor activity could be the consequence of its ability to cross-link cellular DNA at AT tract sequences.
    Matched MeSH terms: Nucleic Acid Conformation
  20. Vadamalai G, Hanold D, Rezaian MA, Randles JW
    Arch Virol, 2006 Jul;151(7):1447-56.
    PMID: 16470341
    Variants of Coconut cadang-cadang viroid have been identified in a plantation oil palm growing in Malaysia. Three size classes are described, comprising 297, 293, and 270 nt. Compared with the 296-nt form of coconut cadang-cadang viroid (CCCVd), all variants substituted C31 --> U in the pathogenicity domain and A175 --> C in the right-hand terminus. Other mutations and deletions accounted for the different sizes. These are the first sequences reported for variants of Coconut cadang-cadang viroid in a species other than coconut palm, and this is the first evidence that variants closely related to CCCVd occur outside the Philippines.
    Matched MeSH terms: Nucleic Acid Conformation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links