Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Shaha DC, Hasan J, Kundu SR, Yusoff FM, Salam MA, Khan M, et al.
    Sci Rep, 2022 Dec 05;12(1):20980.
    PMID: 36470973 DOI: 10.1038/s41598-022-24500-2
    The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).
    Matched MeSH terms: Phytoplankton
  2. Soon TK, Julian Ransangan
    Sains Malaysiana, 2016;45:865-877.
    Marudu Bay, north coast of Sabah is characterized with mesotrophic water body and typical environmental parameters
    throughout the year. The current study was undertaken to evaluate the effect of environmental parameters and nutrients
    in mesotrophic water on the occurrence and distribution of potentially harmful phytoplankton species. The samplings
    were conducted over a period of thirteen months, covering southwest monsoon (SWM), inter-monsoon (IM), and northeast
    monsoon (NEM), at ten stations throughout the bay. Physical parameters (temperature, salinity, pH, dissolved oxygen,
    current speed and secchi depth), biological parameters (cell densities of phytoplankton) and chemical parameters
    (phosphate, nitrate, silicate and ammonia) were examined. The results indicated at least eight potentially harmful
    phytoplankton species (Dinophysis caudata, D. miles, Ceratium furca, C. fursus, Prorocentrum micans, P. sigmoides, P.
    triestinum and Pseudo-nitzschia sp.) were detected in north coast of Sabah. However, the potentially harmful phytoplankton
    species contributed only about 1.3% of the total phytoplankton community. Under nutrient deprivation conditions, the
    potentially harmful phytoplankton species distribution was mainly influenced by the ability to utilize other nitrogen
    sources, cell mobility and toleration to low nutrients environments.
    Matched MeSH terms: Phytoplankton
  3. Singh AK, Hakimi MH, Kumar A, Ahmed A, Abidin NSZ, Kinawy M, et al.
    Sci Rep, 2020 12 17;10(1):22108.
    PMID: 33335176 DOI: 10.1038/s41598-020-78906-x
    A high bituminous shale horizon from the Gurha mine in the Bikaner sub-basin of the Rajasthan District, NW India, was studied using a collection of geochemical and petrological techniques. This study investigated the nature and environmental conditions of the organic matter and its relation to the unconventional oil-shale resources of the bituminous shale. The analyzed shales have high total organic carbon and total sulfur contents, suggesting that these shale sediments were deposited in a paralic environment under reducing conditions. The dominant presence of organic matter derived from phytoplankton algae suggests warm climatic marine environment, with little connection to freshwater enhancing the growth of algae and other microorganisms. The analyzed bituminous shales have high aquatic-derived alginite organic matters, with low Pr/Ph, Pr/n-C17, and Ph/n-C18 ratios. It is classified as Type II oil-prone kerogen, consistent with high hydrogen index value. Considering the maturity indicators of geochemical Tmax (
    Matched MeSH terms: Phytoplankton
  4. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT
    Mar Environ Res, 2020 Jun;158:104935.
    PMID: 32217292 DOI: 10.1016/j.marenvres.2020.104935
    To assess the effects of environmental changes on phytoplankton community structure in a mangrove ecosystem, phytoplankton distribution in Matang mangrove, Malaysia was examined. Phytoplankton and water samples, and in situ environmental parameters from three estuaries with differing levels of disturbance were examined monthly for one year. Two species, Cyclotella choctawhatcheeana and Skeletonema costatum, were dominant in the least disturbed and moderately disturbed areas, respectively. Skeletonema costatum was also the most dominant in the most disturbed area. Significant differences in phytoplankton density and biodiversity between the least and most disturbed areas were also observed. Principle component 1 (salinity, conductivity, total solids/water transparency and nitrogenous compounds) and PC2 (dissolved oxygen, pH and temperature) explained 60.4% of the total variance. This study illustrated that changes in phytoplankton community structure in Matang mangrove estuaries were significantly correlated with environmental parameters which were in turn influenced by ecosystem disturbance levels as well as seasonal changes.
    Matched MeSH terms: Phytoplankton
  5. Abdul-Hadi A, Mansor S, Pradhan B, Tan CK
    Environ Monit Assess, 2013 May;185(5):3977-91.
    PMID: 22930185 DOI: 10.1007/s10661-012-2843-2
    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
    Matched MeSH terms: Phytoplankton/growth & development
  6. Shamsudin L
    Arch Physiol Biochem, 1998 Jul;106(3):253-60.
    PMID: 10099722
    In the search for better understanding on the nutritional quality of natural tropical plankton, samples were collected from shallow coastal waters facing the South China Sea during the dry monsoon (May-September) and the wet monsoon (November-April) seasons from March 1993 to July 1994. The total fatty acid content of the predominantly phytoplankton communities (25-200 microns sieve nets) varied four to fivefold with the lowest value occurring during the dry monsoon when blue-green became predominant. Saturated fatty acid content (SAFA), polyunsaturated fatty acid (PUFA) and total omega 3 (sigma omega 3) showed the same seasonal pattern as the total fatty acid with high values in October to December 1993. When species of the dinoflagellate Peridinium and Ceratium were present in considerable amount, the docosahexaenoic acid DHA content was high, especially from March to May 1993. The maximum content of eicosapentaenoic acid EPA, total omega-3 fatty acid, PUFA and sigma omega 3 in phytoplankton occurred during the pre-monsoon period (October and November 1993) when the diatoms were present in large amounts. The larger fraction sample (> 200 microns sieve nets) which consisted predominantly of zooplankton had high amounts of PUFA from September to November 1993.
    Matched MeSH terms: Phytoplankton/chemistry*
  7. Ismail M, Phang SM, Tong SL, Brown MT
    Environ Monit Assess, 2002 Apr;75(2):145-54.
    PMID: 12002283
    Toxicity testing of four heavy metals (Cd, Cu, Mn and As) using four species of tropical marine phytoplankton, Chaetoceros calcitrans, Isochrysis galbana, Tetraselmis tetrahele and Tetraselmis sp., was carried out in multiwell plates with test volumes of 2 mL and the results compared to those of standard, large volume, shake-flasks. IC50 values (concentrations of metals estimated to inhibit 50% growth relative to the control) were determined after 96 hours based on automated O.D. readings measured in Elisa microplates by a Multiskan spectrophotometer. Good agreement was achieved between O.D. readings and cell counts indicating that this new method is a simple, economical, practical and rapid technique for toxicity testing, and provides good reproducibility of IC50 values. Results of the toxicity tests indicate that Cu was the most toxic metal (average IC50 values ranging from 0.04 to 0.37 mg L(-1)), followed by Cd (0.06-5.7 mg L(-1)), Mn (7.2-21.4 mg L(-1)) and As (33.9-319.3 mg L(-1)). Test species had different degrees of sensitivity to the metals tested, with I. galbana and C. calcitrans the most sensitive to Cu, Cd and Mn. Based on these findings it is recommended that the existing Malaysian Interim Standards for Marine Water Quality for Cd and Cu be reviewed.
    Matched MeSH terms: Phytoplankton*
  8. Er HH, Lee LK, Lim ZF, Teng ST, Leaw CP, Lim PT
    Environ Sci Pollut Res Int, 2018 Aug;25(23):22944-22962.
    PMID: 29858995 DOI: 10.1007/s11356-018-2389-0
    Effects of aquaculture activities on the environmental parameters and phytoplankton community structure were investigated in a semi-enclosed lagoon located at Semerak River, Malaysia. Elevated concentrations of phosphate and ammonia were observed at the aquaculture area and the inner lagoon. Relatively low dissolved oxygen, high total chlorophyll a, and high phytoplankton abundances but low species richness were recorded. Chaetoceros, Pseudo-nitzschia brasiliana, Blixaea quinquecornis, and Skeletonema blooms were observed, and some were associated with anoxia condition. Eutrophication level assessed by UNTRIX suggests that the water quality in the lagoon is deteriorating. Dissolved inorganic phosphorus and nitrogen at the impacted area were 15 and 12 times higher than the reference sites, respectively. Such trophic status indices could provide a useful guideline for optimal aquaculture management plan to reduce the environmental impact caused by aquaculture.
    Matched MeSH terms: Phytoplankton/physiology*
  9. Shang L, Xu Y, Leaw CP, Lim PT, Wang J, Chen J, et al.
    Sci Total Environ, 2021 Aug 01;780:146484.
    PMID: 33774286 DOI: 10.1016/j.scitotenv.2021.146484
    The dinoflagellate genus Alexandrium has been well known for causing paralytic shellfish poisoning (PSP) worldwide. Several non-PSP toxin-producing species, however, have shown to exhibit fish-killing toxicity. Here, we report the allelopathic activity of Alexandrium leei from Malaysia to other algal species, and its toxicity to finfish and zooplankton, via laboratory bioassays. Thirteen microalgal species that co-cultured with Al. leei revealed large variability in the allelopathic effects of Al. leei on the test algae, with the growth inhibition rates ranging from 0 to 100%. The negative allelopathic effects of Al. leei on microalgae included loss of flagella and thus the motility, damages of chain structure, deformation in cell morphology, and eventually cell lysis. The finfish experienced 100% mortality within 24 h exposed to the live culture (2000-6710 cells·mL-1), while the rotifer and brine shrimp exhibited 96-100% and 90-100% mortalities within 48 h when exposed to 500-6000 cells·mL-1 of Al. leei. The mortality of the test animals depended on the Al. leei cell density exposed, leading to a linear relationship between mortality and cell density for the finfish, and a logarithmic relationship for the two zooplankters. When exposed to the treatments using Al. leei whole live culture, cell-free culture medium, extract of algal cells in the f/2-Si medium, extract of methanol, and the re-suspended freeze-and-thaw algal cells, the test organisms (Ak. sanguinea and rotifers) all died at the cell density of 8100 cells·mL-1 within 24 h. Toxin analyses by HILIC-ESI-TOF/MS and LC-ESI-MS/MS demonstrated that Al. leei did not produce PSP-toxins and 13-desmethyl spirolide C. Overall, our findings demonstrated potent allelopathy and toxicity of Al. leei, which do not only pose threats to the aquaculture industry, fisheries, and marine ecosystems but may also play a part role in the population dynamics and bloom formation of this species.
    Matched MeSH terms: Phytoplankton
  10. Chai X, Li X, Hii KS, Zhang Q, Deng Q, Wan L, et al.
    Mar Environ Res, 2021 Jul;169:105398.
    PMID: 34171592 DOI: 10.1016/j.marenvres.2021.105398
    Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.
    Matched MeSH terms: Phytoplankton
  11. F. Shaari, Mustapha MA
    Sains Malaysiana, 2017;46:1191-1200.
    Determination of chlorophyll-a (Chl-a) distribution in the coastal waters is important to understand the coastal environmental conditions. This study was conducted to understand the spatial and temporal distribution of Chl-a along coastal waters of east Peninsular Malaysia and factors influencing its variability using Chl-a data derived from Aqua MODIS satellite (1 km spatial resolution) from January 2006 to December 2012. Chl-a variability was described using empirical orthogonal function (EOF) analysis. In-situ data (temperature, salinity, density and nitrate) and rainfall data from the Department of Meteorology were analyzed using spatial interpolation to determine factors influencing the distribution of Chl-a. The seasonal progressions of Chl-a showed high value during northeast monsoon along the coast. This variability was described by four modes of the EOF analysis. The first mode (72.08% of total variance) indicated seasonal cycle with high variability along the coast. Second mode (17.03% of variance) explained the northeast monsoon with high variability from river mouth to the south. Third mode (2.39% of variance) indicated variability during southwest monsoon along the coast and much higher to the south. Mode 4 (1.93% of variance) explained the inter-monsoon period observed along the northern and southern coastline. Concentration and distribution of Chl-a were related to availability of nutrient influenced by rainfall. The thermohaline front was also observed to play an important role in accumulation of phytoplankton biomass during northeast and southwest monsoon.
    Matched MeSH terms: Phytoplankton
  12. Chang CJ, Hsu HH, Cheah W, Tseng WL, Jiang LC
    Sci Rep, 2019 04 01;9(1):5421.
    PMID: 30931981 DOI: 10.1038/s41598-019-41889-5
    In addition to monsoon-driven rainfall, the Maritime Continent (MC) is subject to heavy precipitation caused by the Madden-Julian Oscillation (MJO), a tropical convection-coupled circulation that propagates eastward from the Indian to the Pacific Ocean. This study shows that riverine runoff from MJO-driven rainfall in the western MC significantly enhances phytoplankton biomass not only in the coastal regions but as far as the nutrient-poor Banda Sea, located 1,000 km downstream of the riverine source. We present observational estimates of the chlorophyll-a concentration in the Banda Sea increasing by 20% over the winter average within an MJO life cycle. The enhancement of phytoplankton in the central Banda Sea is attributed to two coinciding MJO-triggered mechanisms: enhanced sediment loading and eastward advection of waters with high sediment and chlorophyll concentrations. Our results highlight an unexpected effect of MJO-driven rainfall on the downstream oceanic region. This finding has significant implications for the marine food chain and biogeochemical processes in the MC, given the increasing deforestation rate and projections that global warming will intensify both the frequency and strength of MJO-driven rainfall in the MC.
    Matched MeSH terms: Phytoplankton/growth & development; Phytoplankton/metabolism*
  13. Chow CH, Cheah W, Tai JH, Liu SF
    Sci Rep, 2019 10 29;9(1):15550.
    PMID: 31664110 DOI: 10.1038/s41598-019-51989-x
    In summer 2010, a massive bloom appeared in the middle (16-25°N, 160-200°E) of the North Pacific Subtropical Gyre (NPSG) creating a spectacular oasis in the middle of the largest oceanic desert on Earth. Peaked in June 2010 covering over two million km2 in space, this phytoplankton bloom is the largest ever recorded by ocean color satellites in the NPSG over the period from 1997 to 2013. The initiation and mechanisms sustaining the massive bloom were due to atmospheric and oceanic anomalies. Over the north (25-30°N) of the bloom, strong anticyclonic winds warmed sea surface temperature (SST) via Ekman convergence. Subsequently, anomalous westward ocean currents were generated by SST meridional gradients between 19°N and 25°N, producing strong velocity shear that caused large number of mesoscale (100-km in order) cyclonic eddies in the bloom region. The ratio of cyclonic to anticyclonic eddies of 2.7 in summer 2010 is the highest over the 16-year study period. As a result of the large eddy-number differences, eddy-eddy interactions were strong and induced submesoscale (smaller than 100 km) vertical pumping as observed in the in-situ ocean profiles. The signature of vertical pumping was also presented in the in-situ measurements of chlorophyll and nutrients, which show higher concentrations in 2010 than other years.
    Matched MeSH terms: Phytoplankton
  14. Rahman MM, Fathi A
    Environ Sci Pollut Res Int, 2022 Feb;29(9):13661-13674.
    PMID: 34590229 DOI: 10.1007/s11356-021-16502-w
    Very little work has determined the relative importance of uncontrolled environmental factors for affecting fish biology, and how these might influence gillnet catches. This study addresses this deficit for an important Southeast Asian cyprinid (Barbonymus schwanenfeldii). Fish were caught monthly for 12 months using gillnets of three different mesh sizes, each of which was deployed in duplicate at the surface of one of three randomly selected sites in Lake Kenyir, Malaysia, concurrent with determining various environmental parameters and the abundance of phytoplankton (chlorophyll-a). Results indicated that growth co-efficient of B. schwanenfeldii was positively influenced by dissolved oxygen and negatively influenced by total inorganic nitrogen, whereas an opposite result was observed in case of the hepatosomatic index of fish. Water turbidity was a limiting factor only for small fish (mean total length: 15.74±1.10 cm). B. schwanenfeldii could best be caught during the period of high phytoplankton abundance or at the location of high phytoplankton density in the water. Water temperature negatively influenced the gillnet catches of the fish. The remaining environmental factors such as water depth, pH, and phosphate had a weak and insignificant influence (P >0.05) on the biology and gillnet catches of fish. The observed results can be very useful for the ecological monitoring and conservation plans for this species in relation to climate change. Furthermore, the utility of the similar data for other species would be useful not only for regional but also for international fishery by optimizing catches considering environmental conditions.
    Matched MeSH terms: Phytoplankton
  15. Lim JH, Lee CW, Kudo I
    Environ Monit Assess, 2015 May;187(5):246.
    PMID: 25864082 DOI: 10.1007/s10661-015-4487-5
    Phytoplankton growth (μ) and grazing loss (g) rates were measured monthly by the Landry-Hassett dilution method over a 2-year period at both estuarine (Klang) and coastal water (Port Dickson) systems along the Straits of Malacca. Chlorophyll a (Chl a) concentration ranged from 0.20 to 4.47 μg L(-1) at Klang except on two occasions when Chl a spiked above 10 μg L(-1). In contrast, Chl a concentrations were relatively stable at Port Dickson (0.14 to 2.76 μg L(-1)). From the rate measurements, μ was higher (t = 2.01, df = 43, p  0.80). g ranged from 0.30 to 1.50 and 0.21 to 1.51 day(-1) at Klang and Port Dickson, respectively. In this study, grazing loss was coupled to phytoplankton growth, and the ratio of g/μ or grazing pressure which estimates the proportion of primary production grazed was 50% at Klang and lower than at Port Dickson (68%; t = 2.213, df = 36, p 
    Matched MeSH terms: Phytoplankton/growth & development*
  16. Fahmi AM, Summers S, Jones M, Bowler B, Hennige S, Gutierrez T
    Sci Rep, 2023 Mar 27;13(1):5013.
    PMID: 36973465 DOI: 10.1038/s41598-023-31784-5
    Hydrocarbon-degrading bacteria, which can be found living with eukaryotic phytoplankton, play a pivotal role in the fate of oil spillage to the marine environment. Considering the susceptibility of calcium carbonate-bearing phytoplankton under future ocean acidification conditions and their oil-degrading communities to oil exposure under such conditions, we investigated the response of non-axenic E. huxleyi to crude oil under ambient versus elevated CO2 concentrations. Under elevated CO2 conditions, exposure to crude oil resulted in the immediate decline of E. huxleyi, with concomitant shifts in the relative abundance of Alphaproteobacteria and Gammaproteobacteria. Survival of E. huxleyi under ambient conditions following oil enrichment was likely facilitated by enrichment of oil-degraders Methylobacterium and Sphingomonas, while the increase in relative abundance of Marinobacter and unclassified Gammaproteobacteria may have increased competitive pressure with E. huxleyi for micronutrient acquisition. Biodegradation of the oil was not affected by elevated CO2 despite a shift in relative abundance of known and putative hydrocarbon degraders. While ocean acidification does not appear to affect microbial degradation of crude oil, elevated mortality responses of E. huxleyi and shifts in the bacterial community illustrates the complexity of microalgal-bacterial interactions and highlights the need to factor these into future ecosystem recovery projections.
    Matched MeSH terms: Phytoplankton/metabolism
  17. Hii KS, Mohd-Din M, Luo Z, Tan SN, Lim ZF, Lee LK, et al.
    Harmful Algae, 2021 07;107:102077.
    PMID: 34456026 DOI: 10.1016/j.hal.2021.102077
    Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.
    Matched MeSH terms: Phytoplankton
  18. Mustaffa NIH, Latif MT, Wurl O
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299033 DOI: 10.3390/ijms22147413
    Climate change has been predicted to influence the marine phytoplankton community and its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that catalyses the relatively slow interconversion between HCO3- and CO2. Early results indicated that sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of CO2 on a global scale by 15%, an addition of 0.37 Pg C year-1. Despite its central role in the marine carbon cycle, only in recent years have new analytical techniques allowed the first quantifications of eCA and its activity in the oceans. This opens up new research areas in the field of marine biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and concentrations are affected by environmental stressors such as ocean acidification and UV radiation as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in biomonitoring programmes and could be used for future response prediction studies in changing oceans. This review aims to identify the current knowledge and gaps where new research efforts should be focused to better determine the potential feedback of phytoplankton via eCA in the marine carbon cycle in changing oceans.
    Matched MeSH terms: Phytoplankton/enzymology*
  19. Rahman MM, Fathi A, Balcombe SR, Nelson B, John A
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43935-43947.
    PMID: 33840035 DOI: 10.1007/s11356-021-13671-6
    Studies that associate environmental parameters with aquatic organisms in man-made lakes remain limited by accessibility and interest particularly in many Asian countries. With missed opportunities to monitor environmental transitions at Lake Kenyir, our knowledge of lake transition is restricted to the non-mixing shallow waters only. Triplicate monthly benthic invertebrate samples were collected concurrently with various environmental parameters at three locations (zones A-C) of Kenyir Lake, Malaysia. Our results affirmed that the northeast part of Lake Kenyir is oligotrophic. Abundance of phytoplankton, total suspended solids, phosphate, nitrite and nitrate drive the abundance of various groups of benthic invertebrates. All of these extrinsic variables (except phosphate) negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Polychaeta, Oligochaeta, Bivalvia, Gastropod, Isopoda and Copepod in all zones. Phosphate negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Oligochaeta, Bivalvia and Copepod. Its influences on the Polychaeta, Gastropod and Isopoda densities were zone-specific. Overall, seasons equally influenced the relationships between extrinsic and response variables in all zones. The results of this study are useful to evaluate the lake's environmental quality, in conservation and in similar projects involving environmental handling, monitoring and recovery.
    Matched MeSH terms: Phytoplankton*
  20. Tan YH, Poong SW, Yang CH, Lim PE, John B, Pai TW, et al.
    Mar Environ Res, 2022 Dec;182:105782.
    PMID: 36308800 DOI: 10.1016/j.marenvres.2022.105782
    Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.
    Matched MeSH terms: Phytoplankton/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links