Conflicting results have been reported in different populations on the association between two particular RAGE gene polymorphisms (-429T/C and -374T/A) and retinopathy in diabetic patients. Therefore this study was designed to assess the association between both gene polymorphisms with retinopathy in Malaysian diabetic patients. A total of 342 type 2 diabetic patients [171 without retinopathy (DNR) and 171 with retinopathy (DR)] and 235 healthy controls were included in this study. Genomic DNA was obtained from blood samples and the screening for the gene polymorphisms was done using polymerase chain reaction-restriction fragment length polymorphism approach. Overall, the genotype distribution for both polymorphisms was not statistically different (p>0.05) among the control, DNR and DR groups. The -429C minor allele frequency of DR group (12.0%) was not significantly different (p>0.05) when compared to DNR group (16.1%) and healthy controls (11.3%). The -374A allele frequency also did not differ significantly between the control and DNR (p>0.05), control and DR (p>0.05) as well as DNR and DR groups (p>0.05). This is the first study report on RAGE gene polymorphism in Malaysian DR patients. In conclusion, -429T/C and -374T/A polymorphisms in the promoter region of RAGE gene were not associated with Malaysian type 2 DR patients.
Gangliosides and glycophorin are receptors for wheat germ agglutinin. The competitive binding of these molecules to wheat germ agglutinin is studied by electron spin resonance spectroscopy with spin labels attached to the oligosaccharide chains of gangliosides. Evidence shows that glycophorin is more accessible to wheat germ agglutinin binding than gangliosides. The interactions of gangliosides and glycophorin in liposomes is disrupted on low level binding of WGA.
The innate immune system forms the first line of protection against infectious and non-infectious tissue injury. Cells of the innate immune system detect pathogen-associated molecular patterns or endogenous molecules released as a result of tissue injury or inflammation through various innate immune receptors, collectively termed pattern-recognition receptors. Members of the Toll-like receptor (TLR) family of pattern-recognition receptors have well established roles in the host immune response to infection, while the receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor predominantly involved in the recognition of endogenous molecules released in the context of infection, physiological stress or chronic inflammation. RAGE and TLRs share common ligands and signaling pathways, and accumulating evidence points towards their co-operative interaction in the host immune response. At present however, little is known about the mechanisms that result in TLR versus RAGE signalling or RAGE-TLR cross-talk in response to their shared ligands. Here we review what is known in relation to the physicochemical basis of ligand interactions between TLRs and RAGE, focusing on three shared ligands of these receptors: HMGB1, S100A8/A9 and LPS. Our aim is to discuss what is known about differential ligand interactions with RAGE and TLRs and to highlight important areas for further investigation so that we may better understand the role of these receptors and their relationship in host defense.
Asian lineage Zika virus (ZIKV) strains emerged globally, causing outbreaks linked with critical clinical disease outcomes unless the virus is effectively restricted by host immunity. We have previously shown that retinoic acid-inducible gene-I (RIG-I) senses ZIKV to trigger innate immunity to direct interferon (IFN) production and antiviral responses that can control ZIKV infection. However, ZIKV proteins have been demonstrated to antagonize IFN. Here, we conducted in vitro analyses to assess how divergent prototypic ZIKV variants differ in virologic properties, innate immune regulation, and infection outcome. We comparatively assessed African lineage ZIKV/Dakar/1984/ArD41519 (ZIKV/Dakar) and Asian lineage ZIKV/Malaysia/1966/P6740 (ZIKV/Malaysia) in a human epithelial cell infection model. De novo viral sequence determination identified amino acid changes within the ZIKV/Dakar genome compared to ZIKV/Malaysia. Viral growth analyses revealed that ZIKV/Malaysia accumulated viral proteins and genome copies earlier and to higher levels than ZIKV/Dakar. Both ZIKV strains activated RIG-I/IFN regulatory factor (IRF3) and NF-κB pathways to induce inflammatory cytokine expression and types I and III IFNs. However, ZIKV/Malaysia, but not ZIKV/Dakar, potently blocked downstream IFN signaling. Remarkably, ZIKV/Dakar protein accumulation and genome replication were rescued in RIG-I knockout (KO) cells late in acute infection, resulting in ZIKV/Dakar-mediated blockade of IFN signaling. We found that RIG-I signaling specifically restricts viral protein accumulation late in acute infection where early accumulation of viral proteins in infected cells confers enhanced ability to limit IFN signaling, promoting viral replication and spread. Our results demonstrate that RIG-I-mediated innate immune signaling imparts restriction of ZIKV protein accumulation, which permits IFN signaling and antiviral actions controlling ZIKV infection. IMPORTANCE ZIKV isolates are classified under African or Asian lineages. Infection with emerging Asian lineage-derived ZIKV strains is associated with increased incidence of neurological symptoms that were not previously reported during infection with African or preemergent Asian lineage viruses. In this study, we utilized in vitro models to compare the virologic properties of and innate immune responses to two prototypic ZIKV strains from distinct lineages: African lineage ZIKV/Dakar and Asian lineage ZIKV/Malaysia. Compared to ZIKV/Dakar, ZIKV/Malaysia accumulates viral proteins earlier, replicates to higher levels, and robustly blocks IFN signaling during acute infection. Early accumulation of ZIKV/Malaysia NS5 protein confers enhanced ability to antagonize IFN signaling, dampening innate immune responses to promote viral spread. Our data identify the kinetics of viral protein accumulation as a major regulator of host innate immunity, influencing host-mediated control of ZIKV replication and spread. Importantly, these findings provide a novel framework for evaluating the virulence of emerging variants.
OBJECTIVES: Dendritic cell immunoreceptor (DCIR) has been implicated in development of autoimmune disorders in rodent and DCIR polymorphisms were associated with anti-citrullinated proteins antibodies (ACPA)-negative rheumatoid arthritis (RA) in Swedish Caucasians. This study was undertaken to further investigate whether DCIR polymorphisms are also risk factors for the development of RA in four Asian populations originated from China and Malaysia.
METHODS: We genotyped two DCIR SNPs rs2377422 and rs10840759 in Han Chinese population (1,193 cases, 1,278 controls), to assess their association with RA. Subsequently, rs2377422 was further genotyped in three independent cohorts of Malaysian-Chinese subjects (MY_Chinese, 254 cases, 206 controls), Malay subjects (MY_ Malay, 515 cases, 986 controls), and Malaysian-Indian subjects (MY_Indian, 378 cases, 285 controls), to seek confirmation of association in various ethnic groups. Meta-analysis was preformed to evaluate the contribution of rs2377422 polymorphisms to the development of ACPA-negative RA in distinct ethnic groups. Finally, we carried out association analysis of rs2377422 polymorphisms with DCIR mRNA expression levels.
RESULTS: DCIR rs2377422 was found to be significantly associated with ACPA -negative RA in Han Chinese (OR 1.92, 95% CI 1.27-2.90, P=0.0020). Meta-analysis confirms DCIR rs2377422 as a risk factor for ACPA-negative RA across distinct ethnic groups (OR(overall) =1.17, 95% CI 1.06-1.30, P=0.003). The SNP rs2377422 polymorphism showed significant association with DCIR mRNA expression level, i.e. RA-risk CC genotype exhibit a significant increase in the expression of DCIR (P=0.0023, Kruskal-Wallis).
CONCLUSIONS: Our data provide evidence for association between DCIR rs2377422 and RA in non-Caucasian populations and confirm the influence of DCIR polymorphisms on RA susceptibility, especially on ACPA-negative RA.
The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of diabetic microvascular complications. The aim of this study was to investigate the association between 2245G/A gene polymorphism of the RAGE gene and retinopathy in Malaysian type 2 diabetic patients.
Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.