Displaying publications 1 - 20 of 185 in total

Abstract:
Sort:
  1. Gan CS, Yusof R, Othman S
    Acta Trop, 2015 Sep;149:8-14.
    PMID: 25981524 DOI: 10.1016/j.actatropica.2015.05.005
    Dengue virus (DV) infection demonstrates an intriguing virus-induced intracellular membrane alteration that results in the augmentation of major histocompatibility complex (MHC) class I-restricted antigen presentation. As oppose to its biological function in attracting CD8(+) T-cells, this phenomenon appears to facilitate the immune evasion. However, the molecular events that attribute to the dysregulation of the antigen presenting mechanism (APM) by DV remain obscure. In this study, we aimed to characterize the host cell APM upon infection with all serotypes of whole DV. Cellular RNA were isolated from infected cells and the gene expressions of LMP2, LMP7, TAP1, TAP2, TAPBP, CALR, CANX, PDIA3, HLA-A and HLA-B were analyzed via quantitative PCR. The profiles of the gene expression were further validated. We showed that all four DV serotypes modulate host APM at the proteasomal level with DV2 showing the most prominent expression profile.
    Matched MeSH terms: RNA, Messenger/metabolism*
  2. Yusoff NH, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, et al.
    Addict Biol, 2016 Jan;21(1):98-110.
    PMID: 25262913 DOI: 10.1111/adb.12185
    Mitragynine is the major psychoactive alkaloid of the plant kratom/ketum. Kratom is widely used in Southeast Asia as a recreational drug, and increasingly appears as a pure compound or a component of 'herbal high' preparations in the Western world. While mitragynine/kratom may have analgesic, muscle relaxant and anti-inflammatory effects, its addictive properties and effects on cognitive performance are unknown. We isolated mitragynine from the plant and performed a thorough investigation of its behavioural effects in rats and mice. Here we describe an addictive profile and cognitive impairments of acute and chronic mitragynine administration, which closely resembles that of morphine. Acute mitragynine has complex effects on locomotor activity. Repeated administration induces locomotor sensitization, anxiolysis and conditioned place preference, enhances expression of dopamine transporter- and dopamine receptor-regulating factor mRNA in the mesencephalon. While there was no increase in spontaneous locomotor activity during withdrawal, animals showed hypersensitivity towards small challenging doses for up to 14 days. Severe somatic withdrawal signs developed after 12 hours, and increased level of anxiety became evident after 24 hours of withdrawal. Acute mitragynine independently impaired passive avoidance learning, memory consolidation and retrieval, possibly mediated by a disruption of cortical oscillatory activity, including the suppression of low-frequency rhythms (delta and theta) in the electrocorticogram. Chronic mitragynine administration led to impaired passive avoidance and object recognition learning. Altogether, these findings provide evidence for an addiction potential with cognitive impairments for mitragynine, which suggest its classification as a harmful drug.
    Matched MeSH terms: RNA, Messenger/metabolism
  3. Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 Apr 01;308(7):R559-68.
    PMID: 25632023 DOI: 10.1152/ajpregu.00444.2014
    Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
    Matched MeSH terms: RNA, Messenger/metabolism
  4. Ibrahim K, Daud SS, Seah YL, Yeoh AE, Ariffin H, Malaysia-Singapore Leukemia Study Group
    Ann Clin Lab Sci, 2008;38(4):338-43.
    PMID: 18988926
    Childhood acute lymphoblastic leukaemia (ALL) is a heterogenous disease in which oncogene fusion transcripts are known to influence the biological behaviour of the different ALL subtypes. Screening for prognostically important transcripts is an important diagnostic step in treatment stratification and prognostication of affected patients. We describe a SYBR-Green real-time multiplex PCR assay to screen for transcripts TEL-AML1, E2A-PBX1, MLL-AF4, and the two breakpoints of BCR-ABL (p190 and p210). Validation of the assay was based on conventional karyotyping results. This new assay provides a rapid, sensitive, and accurate detection method for prognostically important transcripts in childhood ALL.
    Matched MeSH terms: RNA, Messenger/metabolism
  5. Loh SY, Giribabu N, Gholami K, Salleh N
    Arch Biochem Biophys, 2017 Jan 15;614:41-49.
    PMID: 28024836 DOI: 10.1016/j.abb.2016.12.008
    We hypothesized that higher blood pressure in males than females could be due to testosterone effects on aquaporin (AQP) expression in kidneys.

    METHODS: Orchidectomized adult male Sprague-Dawley (SD) rats received seven days subcutaneous testosterone treatment (125 μg/kg/day or 250 μg/kg/day), with or without flutamide or finasteride. Following completion of treatment, MAP was determined in rats under anaesthesia via carotid artery cannulation. In another cohort of rats, kidneys were removed following sacrifice and AQP-1, 2, 3, 4, 6 and 7 protein and mRNA levels were determined by Western blotting and Real-time PCR respectively. Distribution of AQP subunits' protein in the nephrons were visualized by immunofluorescence.

    RESULTS: Testosterone caused MAP, AQP-1, 2, 4, 6 and 7 protein and mRNA levels in kidneys to increase while AQP-3 protein and mRNA levels in kidneys to decrease (p 

    Matched MeSH terms: RNA, Messenger/metabolism
  6. Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, et al.
    Arch Pharm Res, 2022 Dec;45(12):865-893.
    PMID: 36422795 DOI: 10.1007/s12272-022-01418-x
    Messenger RNA (mRNA) recently emerged as an appealing alternative to treat and prevent diseases ranging from cancer and Alzheimer's disease to COVID-19 with significant clinical outputs. The in vitro-transcribed mRNA has been engineered to mimic the structure of natural mRNA for vaccination, cancer immunotherapy and protein replacement therapy. In past decades, significant progress has been noticed in unveiling the molecular pathways of mRNA, controlling its translatability and stability, and its evolutionary defense mechanism. However, numerous unsolved structural, biological, and technical difficulties hamper the successful implementation of systemic delivery of mRNA for safer human consumption. Advances in designing and manufacturing mRNA and selecting innovative delivery vehicles are mandatory to address the unresolved issues and achieve the full potential of mRNA drugs. Despite the substantial efforts made to improve the intracellular delivery of mRNA drugs, challenges associated with diverse applications in different routes still exist. This study examines the current progress of mRNA therapeutics and advancements in designing biomaterials and delivery strategies, the existing translational challenges of clinical tractability and the prospects of overcoming any challenges related to mRNA.
    Matched MeSH terms: RNA, Messenger/metabolism
  7. Zhao MM, Awang Z, Jumuddin FAB
    Asian Pac J Cancer Prev, 2024 Feb 01;25(2):603-608.
    PMID: 38415547 DOI: 10.31557/APJCP.2024.25.2.603
    OBJECTIVE: To analyze the high expression of peroxisome membrane protein 4 (PXMP4) in hepatocellular carcinoma (HCC) and its clinical significance.

    METHODS: The expression of PXMP4 mRNA in HCC tissues and corresponding adjacent tissues was detected by Q-PCR, and the expression of PXMP4 protein was detected by Western blot and immunohistochemistry. The correlation of PXMP4 protein expression with clinicopathological features and prognosis of HCC was analyzed.

    RESULTS: The expression levels of PXMP4 mRNA and protein in HCC tissues were significantly higher than those in adjacent tissues (P < 0.05), and its high expression was significantly correlated with tumor differentiation, lymph node metastasis, depth of invasion and TNM stage (P < 0.05). Patients with high expression of PXMP4 had a poor prognosis (P < 0.05).

    CONCLUSION: The high expression of PXMP4 may promote the occurrence and development of HCC, and inhibition of PXMP4 may be one of the potential molecular targets for targeted therapy of HCC.

    Matched MeSH terms: RNA, Messenger/metabolism
  8. Mohamed ZI, Tee SF, Chow TJ, Loh SY, Yong HS, Bakar AKA, et al.
    Asian J Psychiatr, 2019 Feb;40:76-81.
    PMID: 30771755 DOI: 10.1016/j.ajp.2019.02.001
    Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.
    Matched MeSH terms: RNA, Messenger/metabolism
  9. Rouhollahi E, Zorofchian Moghadamtousi S, Paydar M, Fadaeinasab M, Zahedifard M, Hajrezaie M, et al.
    PMID: 25652758 DOI: 10.1186/s12906-015-0534-6
    BACKGROUND: Curcuma purpurascens BI. (Zingiberaceae) commonly known as 'Koneng Tinggang' and 'Temu Tis' is a Javanese medicinal plant which has been used for numerous ailments and diseases in rural Javanese communities. In the present study, the apoptogenic activity of dichloromethane extract of Curcuma purpurascens BI. rhizome (DECPR) was investigated against HT-29 human colon cancer cells.
    METHODS: Acute toxicity study of DECPR was performed in Sprague-Dawley rats. Compounds of DECPR were analyzed by the gas chromatography-mass spectrometry-time of flight (GC-MS-TOF) analysis. Cytotoxic effect of DECPR on HT-29 cells was analyzed by MTT and lactate dehydrogenase (LDH) assays. Effects of DECPR on reactive oxygen species (ROS) formation and mitochondrial-initiated events were investigated using a high content screening system. The activities of the caspases were also measured using a fluorometric assay. The quantitative PCR analysis was carried out to examine the gene expression of Bax, Bcl-2 and Bcl-xl proteins.
    RESULTS: The in vivo acute toxicity study of DECPR on rats showed the safety of this extract at the highest dose of 5 g/kg. The GC-MS-TOF analysis of DECPR detected turmerone as the major compound in dichloromethane extract. IC50 value of DECPR towards HT-29 cells after 24 h treatment was found to be 7.79 ± 0.54 μg/mL. In addition, DECPR induced LDH release and ROS generation in HT-29 cells through a mechanism involving nuclear fragmentation and cytoskeletal rearrangement. The mitochondrial-initiated events, including collapse in mitochondrial membrane potential and cytochrome c leakage was also triggered by DECPR treatment. Initiator caspase-9 and executioner caspase-3 was dose-dependently activated by DECPR. The quantitative PCR analysis on the mRNA expression of Bcl-2 family of proteins showed a significant up-regulation of Bax associated with down-regulation in Bcl-2 and Bcl-xl mRNA expression.
    CONCLUSIONS: The findings presented in the current study showed that DECP suppressed the proliferation of HT-29 colon cancer cells and triggered the induction of apoptosis through mitochondrial-dependent pathway.
    Matched MeSH terms: RNA, Messenger/metabolism
  10. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
    Matched MeSH terms: RNA, Messenger/metabolism
  11. Ugusman A, Zakaria Z, Hui CK, Nordin NA
    PMID: 21496279 DOI: 10.1186/1472-6882-11-31
    Aqueous extract of Piper sarmentosum (AEPS) is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB) induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-selectin. NADPH oxidase 4 (Nox4) is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase (GPx) are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs).
    Matched MeSH terms: RNA, Messenger/metabolism
  12. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: RNA, Messenger/metabolism
  13. Zainuddin A, Chua KH, Abdul Rahim N, Makpol S
    BMC Mol. Biol., 2010;11:59.
    PMID: 20707929 DOI: 10.1186/1471-2199-11-59
    Several genes have been used as housekeeping genes and choosing an appropriate reference gene is important for accurate quantitative RNA expression in real time RT-PCR technique. The expression levels of reference genes should remain constant between the cells of different tissues and under different experimental conditions. The purpose of this study was to determine the effect of different experimental treatments on the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA so that the reliability of GAPDH as reference gene for quantitative real time RT-PCR in human diploid fibroblasts (HDFs) can be validated. HDFs in 4 different treatment groups viz; young (passage 4), senescent (passage 30), H2O2-induced oxidative stress and gamma-tocotrienol (GTT)-treated groups were harvested for total RNA extraction. Total RNA concentration and purity were determined prior to GAPDH mRNA quantification. Standard curve of GAPDH expression in serial diluted total RNA, melting curve analysis and agarose gel electrophoresis were used to determine the reliability of GAPDH as reference gene.
    Matched MeSH terms: RNA, Messenger/metabolism*
  14. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: RNA, Messenger/metabolism
  15. Gobe GC, Ng KL, Small DM, Vesey DA, Johnson DW, Samaratunga H, et al.
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):47-53.
    PMID: 26995091 DOI: 10.1016/j.bbrc.2016.03.048
    Apoptosis repressor with caspase recruitment domain (ARC), an endogenous inhibitor of apoptosis, is upregulated in a number of human cancers, thereby conferring drug resistance and giving a rationale for the inhibition of ARC to overcome drug resistance. Our hypothesis was that ARC would be similarly upregulated and targetable for therapy in renal cell carcinoma (RCC). Expression of ARC was assessed in 85 human RCC samples and paired non-neoplastic kidney by qPCR and immunohistochemistry, as well as in four RCC cell lines by qPCR, Western immunoblot and confocal microscopy. Contrary to expectations, ARC was significantly decreased in the majority of clear cell RCC and in three (ACHN, Caki-1 and 786-0) of the four RCC cell lines compared with the HK-2 non-cancerous human proximal tubular epithelial cell line. Inhibition of ARC with shRNA in the RCC cell line (SN12K1) that had shown increased ARC expression conferred resistance to Sunitinib, and upregulated interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). We therefore propose that decreased ARC, particularly in clear cell RCC, confers resistance to targeted therapy through restoration of tyrosine kinase-independent alternate angiogenesis pathways. Although the results are contrary to expectations from other cancer studies, they were confirmed here with multiple analytical methods. We believe the highly heterogeneous nature of cancers like RCC predicate that expression patterns of molecules must be interpreted in relation to respective matched non-neoplastic regions. In the current study, this procedure indicated that ARC is decreased in RCC.
    Matched MeSH terms: RNA, Messenger/metabolism
  16. Veeraveedu PT, Sanada S, Okuda K, Fu HY, Matsuzaki T, Araki R, et al.
    Biochem Pharmacol, 2017 Aug 15;138:73-80.
    PMID: 28450225 DOI: 10.1016/j.bcp.2017.04.022
    BACKGROUND AND PURPOSE: ST2 is one of the interleukin (IL)-1 receptor family members comprising of membrane-bound (ST2L) and soluble (sST2) isoforms. Clinical trials have revealed that serum sST2 levels predict outcome in patient with myocardial infarction or chronic heart failure (HF). Meanwhile, we and others have reported that ablation of ST2 caused exaggerated cardiac remodeling in both ischemic and non-ischemic HF. Here, we tested whether IL-33, the ligand for ST2, protects myocardium against HF induced by mechanical overload using ligand specific knockout (IL-33(-/-)) mice.

    METHODS AND RESULTS: Transverse aortic constriction (TAC)/sham surgery were carried out in both IL-33 and WT-littermates. Echocardiographic measurements were performed at frequent interval during the study period. Heart was harvested for RNA and histological measurements. Following mechanical overload by TAC, myocardial mRNA expressions of Th1 cytokines, such as TNF-α were enhanced in IL-33(-/-) mice than in WT mice. After 8-weeks, IL-33(-/-) mice exhibited exacerbated left ventricular hypertrophy, increased chamber dilation, reduced fractional shortening, aggravated fibrosis, inflammation, and impaired survival compared with WT littermates. Accordingly, myocardial mRNA expressions of hypertrophic (c-Myc/BNP) molecular markers were also significantly enhanced in IL-33(-/-) mice than those in WT mice.

    CONCLUSIONS: We report for the first time that ablation of IL-33 directly and significantly leads to exacerbate cardiac remodeling with impaired cardiac function and survival upon mechanical stress. These data highlight the cardioprotective role of IL-33/ST2 system in the stressed myocardium and reveal a potential therapeutic role for IL-33 in non-ischemic HF.

    Matched MeSH terms: RNA, Messenger/metabolism
  17. Adam SH, Giribabu N, Kassim N, Kumar KE, Brahmayya M, Arya A, et al.
    Biomed Pharmacother, 2016 Jul;81:439-452.
    PMID: 27261624 DOI: 10.1016/j.biopha.2016.04.032
    INTRODUCTION: Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope.

    METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.

    RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.

    CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.

    Matched MeSH terms: RNA, Messenger/metabolism
  18. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, et al.
    Biomed Pharmacother, 2019 Nov;119:109445.
    PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445
    The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
    Matched MeSH terms: RNA, Messenger/metabolism
  19. Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Abdullah MA, et al.
    Biomed Pharmacother, 2017 Nov;95:780-788.
    PMID: 28892789 DOI: 10.1016/j.biopha.2017.08.074
    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue.
    Matched MeSH terms: RNA, Messenger/metabolism
  20. Hamzah S, Teh LK, Siew JS, Ahmad G, Wong HS, Zakaria ZA, et al.
    Can J Physiol Pharmacol, 2014 Jan;92(1):50-7.
    PMID: 24383873 DOI: 10.1139/cjpp-2013-0128
    Tacrolimus (FK506) is a calcineurin inhibitor with a narrow therapeutic index that exhibits large interindividual variation. Seventy-eight kidney transplant patients treated with tacrolimus were recruited to study the correlation of dose adjusted trough level (level/dose; L/D) of tacrolimus with CYP3A5 and ABCB1 genotypes, as well as the mRNA copy number of ABCB1 in blood. Patients were genotyped for ABCB1 (C1236T, G2677T/A, and C3435T) and CYP3A5 (G6986A), while ABCB1 mRNA transcript copy number was determined by absolute quantification (real-time PCR) in 46 patients. CYP3A5*3 genotypes were found to be a good predictor of tacrolimus L/D in kidney-transplant patients. Significantly higher L/D was observed among non-expressors (2.85, 95%: 2.05-3.70 (ng·mL(-1))/(mg·kg(-1))) as compared with the expressors (1.15, 95%: 0.95-1.80 (ng·mL(-1))/(mg·kg(-1))) of CYP3A5 (Mann-Whitney U test; P < 0.001). No correlation was observed between L/D and the ABCB1 genotypes. A significant inverse correlation of blood ABCB1 mRNA level with L/D was demonstrated (Spearman's Rank Order correlation; P = 0.016, rs = -0.348). However, in multiple regression analysis, only CYP3A5*3 genotype groups were found to be significantly correlated with tacrolimus L/D (P < 0.001). These findings highlight the importance of CYP3A5*3 pharmacogenotyping among kidney-transplant patients treated with tacrolimus, and confirm the role of blood cell P-glycoprotein in influencing the L/D for tacrolimus.
    Matched MeSH terms: RNA, Messenger/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links