Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Chang CT, Ang JY, Wong JM, Tan SS, Chin SK, Lim AB, et al.
    Med J Malaysia, 2020 05;75(3):286-291.
    PMID: 32467546
    AIM: This study is conducted to compare the pharmacokinetic profiles of two fixed dose combination of metformin/glibenclamide tablets (500mg/5 mg per tablet).

    MATERIALS AND METHODS: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2- period crossover study with a washout period of 7 days. All 28 adult male subjects were required to fast for at least 10 hours prior to drug administration and they were given access to water ad libitum during this period. Thirty minutes prior to dosing, all subjects were served with a standardized high-fat and high-calorie breakfast with a total calorie of 1000 kcal which was in accordance to the EMA Guideline on the Investigation of Bioequivalence. Subsequently, subjects were administered either the test or reference preparation with 240mL of plain water in the first trial period. During the second trial period, they received the alternate preparation. Plasma levels of glibenclamide and metformin were analysed separately using two different high performance liquid chromatography methods.

    RESULTS: The 90% confidence interval (CI) for the ratio of the AUC0-t, AUC0-∞, and Cmax of the test preparation over those of the reference preparation were 0.9693-1.0739, 0.9598- 1.0561 and 0.9220 - 1.0642 respectively. Throughout the study period, no serious drug reaction was observed. However, a total of 26 adverse events (AE)/side effects were reported, including 24 that were definitely related to the study drugs, namely giddiness (n=17), while diarrheoa (n=3), headache (n=2) and excessive hunger (n=2) were less commonly reported by the subjects.

    CONCLUSION: It can be concluded that the test preparation is bioequivalent to the reference preparation.

    Matched MeSH terms: Therapeutic Equivalency*
  2. Cheah KY, Mah KY, Pang LH, Ng SM, Wong JW, Tan SS, et al.
    BMC Pharmacol Toxicol, 2020 06 23;21(1):45.
    PMID: 32576287 DOI: 10.1186/s40360-020-00416-3
    BACKGROUND: Paracetamol/Orphenadrine is a fixed dose combination containing 35 mg orphenadrine and 450 mg paracetamol. It has analgesic and muscle relaxant properties and is widely available as generics. This study is conducted to investigate the relative bioavailability and bioequivalence between one fixed dose paracetamol/orphenadrine combination test preparation and one fixed dose paracetamol/orphenadrine combination reference preparation in healthy volunteers under fasted condition for marketing authorization in Malaysia.

    METHOD: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2-period crossover study with a washout period of 7 days. Paracetamol/Orphenadrine tablets were administered after a 10-h fast. Blood samples for pharmacokinetic analysis were collected at scheduled time intervals prior to and up to 72 h after dosing. Blood samples were centrifuged, and separated plasma were kept frozen (- 15 °C to - 25 °C) until analysis. Plasma concentrations of orphenadrine and paracetamol were quantified using liquid-chromatography-tandem mass spectrometer using diphenhydramine as internal standard. The pharmacokinetic parameters AUC0-∞, AUC0-t and Cmax were determined using plasma concentration time profile for both preparations. Bioequivalence was assessed according to the ASEAN guideline acceptance criteria for bioequivalence which is the 90% confidence intervals of AUC0-∞, AUC0-t and Cmax ratio must be within the range of 80.00-125.00%.

    RESULTS: There were 28 healthy subjects enrolled, and 27 subjects completed this trial. There were no significant differences observed between the AUC0-∞, AUC0-t and Cmax of both test and reference preparations in fasted condition. The 90% confidence intervals for the ratio of AUC0-t (100.92-111.27%), AUC0-∞ (96.94-108.08%) and Cmax (100.11-112.50%) for orphenadrine (n = 25); and AUC0-t (94.29-101.83%), AUC0-∞ (94.77-101.68%) and Cmax (87.12-101.20%) for paracetamol (n = 27) for test preparation over reference preparation were all within acceptable bioequivalence range of 80.00-125.00%.

    CONCLUSION: The test preparation is bioequivalent to the reference preparation and can be used interchangeably.

    TRIAL REGISTRATION: NMRR- 17-1266-36,001; registered and approved on 12 September 2017.

    Matched MeSH terms: Therapeutic Equivalency
  3. Lv X, Zhong G, Yao H, Wu J, Ye S
    Int J Clin Pharmacol Ther, 2021 Nov;59(11):725-733.
    PMID: 34448694 DOI: 10.5414/CP203986
    OBJECTIVE: An earlier three-way crossover study evaluating bioequivalence of 3 cefalexin formulations (capsule for reference, capsule and tablet for test) in healthy subjects in Malaysia showed that the intra-individual coefficients of variation were 9.25% for AUC0-t, 9.54% for AUC0-∞, and 13.90% for Cmax. It is preliminarily stated that cefalexin is not a high-variation product. The here-presented clinical study in China was carried out to analyze the pharmacokinetic properties of two preparations in fasting and postprandial condition to assess the bioequivalence of the test preparation and reference preparation when administered on a fasting and postprandial basis in healthy Chinese subjects and to observe the safety of the test preparation and reference preparation in healthy Chinese subjects.

    MATERIALS AND METHODS: In this trial, a total of 56 eligible subjects were randomly assigned to the fasting group and the postprandial group. The two groups were given 250 mg of the test and reference preparation, respectively. Liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to determine the plasma concentration of cefalexin. PhoenixWinNonlin software (V7.0) was used to calculate the pharmacokinetic parameters of cefalexin using the non-compartmental model (NCA), and the bioequivalence and safety results were calculated by SAS (V9.4) software.

    RESULTS: The main pharmacokinetic parameters of the test and reference preparations were as follows, the fasting group: Cmax 12.59 ± 2.65 μg/mL, 12.72 ± 2.28 μg/mL; AUC0-8h 20.43 ± 3.47 h×μg/mL, 20.66 ± 3.38 h×μg/mL; AUC0-∞ 20.77 ± 3.53 h×μg/mL, 21.02 ± 3.45 h×μg/mL; the postprandial group: Cmax 5.25 ± 0.94 μg/mL, 5.23 ± 0.80 μg/mL; AUC0-10h 16.92 ± 2.03 h×μg/mL, 17.09 ± 2.31 h×μg/mL; AUC0-∞ 17.33 ± 2.09 h×μg/mL, 17.67 ± 2.45 h×μg/mL.

    CONCLUSION: The 90% confidence intervals of geometric mean ratios of test preparation and reference preparation were calculated, and the 90% confidence intervals of geometric mean ratios of Cmax, AUC0-10h, and AUC0-∞ were within the 80.00% ~ 125.00% range in both groups. Both Cmax and AUC met the pre-determined criteria for assuming bioequivalence. The test and reference products were bioequivalent after administration under fasting as well as under fed conditions in healthy Chinese subjects. This study may suggest that successful generic versions of cefalexin not only guarantee the market supply of such drugs but can also improve the safety and effectiveness and quality controllability of cefalexin through a new process and a new drug composition ratio.

    Matched MeSH terms: Therapeutic Equivalency
  4. Wong JW, Yuen KH, Nagappan S, Shahul WS, Ho SS, Gan EK, et al.
    J Pharm Pharmacol, 2003 Feb;55(2):193-8.
    PMID: 12631411
    We have evaluated the therapeutic equivalence of a beta-cyclodextrin-artemisinin complex at an artemisinin dose of 150 mg, with a commercial reference preparation, Artemisinin 250 at a recommended dose of 250 mg. One hundred uncomplicated falciparum malarial patients were randomly assigned to orally receive either beta-cyclodextrin-artemisinin complex (containing 150 mg artemisinin) twice daily for five days or the active comparator (containing 250 mg artemisinin) twice daily for five days. The patients were hospitalized for seven days and were required to attend follow up assessments on days 14, 21, 28 and 35. All patients in both treatment groups were cured of the infection and achieved therapeutic success. At day seven of treatment, all patient blood was clear of the parasites and the sublingual temperature of all patients was less than 37.5 degrees C. Moreover, the parasite clearance time in both treatment groups was similar, being approximately three days after initiation of treatment. Comparable plasma artemisinin concentrations were observed between patients in both treatment groups at 1.5 and 3.0 h, although slightly higher levels were obtained with patients in the beta-cyclodextrin-artemisinin complex-treated group. The beta-cyclodextrin-artemisinin complex at a dose of 150 mg artemisinin was therapeutically equivalent to 250 mg Artemisinin 250. Additionally, patients receiving beta-cyclodextrin-artemisinin complex showed less variability in their plasma artemisinin concentrations at 1.5 h post-dosing, which suggested a more consistent rate of drug absorption.
    Matched MeSH terms: Therapeutic Equivalency
  5. Yuen KH, Peh KK, Chan KL, Toh WT
    Drug Dev Ind Pharm, 1998 Oct;24(10):955-9.
    PMID: 9876550
    A study was conducted to compare the in vivo bioavailability of a generic metoprolol tablet preparation (Metoprolol) with that of the innovator product, Betaloc. Both preparations have a labeled dose of 100 mg metoprolol tartrate. Twelve healthy adult male volunteers participated in the study, which was conducted according to a standard two-way crossover design with a washout period of 1 week. The bioavailability was compared using the total area under the plasma level versus time curve (AUC0-infinity), peak plasma concentration (Cmax), and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the logarithmically transformed AUC0-infinity values or the logarithmically transformed Cmax values of the two preparations. However, a statistically significant difference was observed between the Tmax values, but may not be therapeutically significant or important. Moreover, the 90% confidence interval (CI) for the ratio of the logarithmically transformed AUC0-infinity values of Metoprolol over those of Betaloc was calculated to be between 0.94 and 1.02, while that of Cmax was between 0.98 and 1.01, both of which are within the acceptable limit of 0.80-1.25. From the data obtained, it was also observed that a high proportion of our volunteers of Asian origin appeared to be poor metabolizers of metoprolol, which was consistent with what had been observed in our previous study of another preparation of metoprolol.
    Matched MeSH terms: Therapeutic Equivalency
  6. Liew KB, Peh KK, Loh GO, Tan YT
    Drug Dev Ind Pharm, 2014 Sep;40(9):1156-62.
    PMID: 23688276 DOI: 10.3109/03639045.2013.798805
    Although the general pharmacokinetics of cephalexin is quite established up-to-date, however, no population-based study on Cephalexin pharmacokinetics profile in Malay population has been reported yet in the literature.
    Matched MeSH terms: Therapeutic Equivalency
  7. Hassali MA, Kong DC, Stewart K
    Med Educ, 2007 Jul;41(7):703-10.
    PMID: 17614892
    To ascertain any differences in knowledge and perceptions of generic medicines between senior (final year) medical students and pharmacy pre-registrants in Australia.
    Matched MeSH terms: Therapeutic Equivalency
  8. Taylor PW, Arnet I, Fischer A, Simpson IN
    Obes Facts, 2010 Aug;3(4):231-7.
    PMID: 20823686 DOI: 10.1159/000319450
    OBJECTIVE: To compare the pharmaceutical quality of Xenical (chemically produced orlistat) with nine generic products, each produced by fermentation processes.

    METHODS: Xenical 120 mg capsules (Roche, Basel, Switzerland) were used as reference material. Generic products were from India, Malaysia, Argentina, Philippines, Uruguay, and Taiwan. Colour, melting temperature, crystalline form, particle size, capsule fill mass, active pharmaceutical ingredient content, amount of impurities, and dissolution were compared. Standard physical and chemical laboratory tests were those developed by Roche for Xenical.

    RESULTS: All nine generic products failed the Xenical specifications in four or more tests, and two generic products failed in seven tests. A failure common to all generic products was the amount of impurities present, mostly due to different by-products, including side-chain homologues not present in Xenical. Some impurities were unidentified. Two generic products tested failed the dissolution test, one product formed a capsule-shaped agglomerate on storage and resulted in poor (=15%) dissolution. Six generic products were powder formulations.

    CONCLUSIONS: All tested generic orlistat products were pharmaceutically inferior to Xenical. The high levels of impurities in generic orlistat products are a major safety and tolerability concern.

    Matched MeSH terms: Therapeutic Equivalency
  9. Chong CP, Hassali MA, Bahari MB, Shafie AA
    Int J Clin Pharm, 2011 Feb;33(1):124-31.
    PMID: 21365404 DOI: 10.1007/s11096-010-9470-1
    OBJECTIVE: To evaluate the Malaysian community pharmacists' views on generic medicines.

    SETTING: A sample of 1419 Malaysian community pharmacies with resident pharmacists.

    METHOD: A cross-sectional nationwide survey using a self-completed mailing questionnaire.

    MAIN OUTCOME MEASURE: Pharmacists' views on generic medicines including issues surrounding efficacy, safety, quality and bioequivalence.

    RESULTS: Responses were received from 219 pharmacies (response rate 15.4%). Only 50.2% of the surveyed pharmacists agreed that all products that are approved as generic equivalents can be considered therapeutically equivalent with the innovator medicines. Around 76% of respondents indicated that generic substitution of narrow therapeutic index medicines is inappropriate. The majority of the pharmacists understood that a generic medicine must contain the same amount of active ingredient (84.5%) and must be in the same dosage form as the innovator brand (71.7%). About 21% of respondents though that generic medicines are of inferior quality compared to innovator medicines. Most of the pharmacists (61.6%) disagreed that generic medicines produce more side-effects than innovator brand. Pharmacists graduated from Malaysian universities, twinning program and overseas universities were not differed significantly in their views on generic medicines. Additionally, the respondents appeared to have difficulty in ascertaining the bioequivalent status of the marketed generic products in Malaysia.

    CONCLUSION: The Malaysian pharmacists' have lack of information and/or trust in the generic manufacturing and/or approval system in Malaysia. This issue should be addressed by pharmacy educators and relevant government agencies.

    Matched MeSH terms: Therapeutic Equivalency
  10. Chong CP, Hassali MA, Bahari MB, Shafie AA
    Health Policy, 2010 Jan;94(1):68-75.
    PMID: 19762106 DOI: 10.1016/j.healthpol.2009.08.011
    This study aims to provide baseline data to support the implementation of generic substitution policy in Malaysia by evaluating the community pharmacists' perceptions and opinions on generic substitution and current substitution practices.
    Matched MeSH terms: Therapeutic Equivalency
  11. Wong ZY, Alrasheedy AA, Hassali MA, Saleem F
    Res Social Adm Pharm, 2016 04 20;12(5):807-10.
    PMID: 27157864 DOI: 10.1016/j.sapharm.2016.04.002
    Matched MeSH terms: Therapeutic Equivalency
  12. Rajendran MAP, Allada R, Sajid SS
    Recent Adv Drug Deliv Formul, 2021;15(1):15-36.
    PMID: 34602030 DOI: 10.2174/2667387815666210203151209
    Co-crystal is an attractive alternative and a new class of solid forms because that can be engineered to have desired physicochemical properties. Co-crystals have gained considerable attention from the generic pharmaceutical industry after the USFDA released its finalized guidlines in the year 2018 on the regulatory classification of co-crystals. In this review, we discussed how co-crystals could be explored as a potential alternative solid form for the development of a generic product that meets the legal, regulatory, and bioequivalence requirements. In the contents, we discussed in detail concepts such as the selection of coformers, various ways of making co-crystals, the strategy of characterization to discriminate between co-crystal and salt, polymorphism in co-crystals, the aspects of intellectual property and, finally, the regulatory aspects of co-crystals.
    Matched MeSH terms: Therapeutic Equivalency
  13. Liew KB, Loh GO, Tan YT, Peh KK
    Biomed Chromatogr, 2015 Jun;29(6):953-60.
    PMID: 25400284 DOI: 10.1002/bmc.3378
    A simple, rapid, specific and reliable UFLC coupled with ESI-MSMS assay method to simultaneously quantify sildenafil and N-desmethyl sildenafil, with loperamide as internal standard, was developed. Chromatographic separation was performed on a Thermo Scientific Accucore C18 column with an isocratic mobile phase composed of 0.1% v/v formic acid in purified water-methanol (20:80, v/v), at a flow rate of 0.3 mL/min. Sildenafil, N-desmethyl sildenafil and loperamide were detected with proton adducts at m/z 475.4 > 58.2, 461.3 > 85.2 and 477.0 > 266.1 in multiple reaction monitoring positive mode, respectively. Both analytes and internal standard were extracted by diethyl ether. The method was validated over a linear concentration range of 10-800 ng/mL for sildenafil and 10-600 ng/mL for N-desmethyl sildenafil with correlation coefficient (r(2) ) ≥0.9976 for sildenafil and (r(2) ) ≥0.9992 for N-desmethyl sildenafil. The method was precise, accurate and stable. The proposed method was applied to study the bioequivalence between a 100 mg dose of two pharmaceutical products: Viagra (original) and Edyfil (generic) products. AUC0-t , Cmax and Tmax were 2285.79 ng h/mL, 726.10 ng/mL and 0.94 h for Viagra and 2363.25 ng h/mL, 713.91 ng/mL and 0.83 hour for Edyfil. The 90% confidence interval of these parameters of this study fall within the regulatory range of 80-125%, hence they are considered as bioequivalent.
    Matched MeSH terms: Therapeutic Equivalency
  14. Liew KB, Loh GO, Tan YT, Peh KK
    Biomed Chromatogr, 2014 Sep;28(9):1246-53.
    PMID: 24585432 DOI: 10.1002/bmc.3153
    The objectives of this study were to develop a new deproteinization method to extract amoxicillin from human plasma and evaluate the inter-ethnic variation of amoxicillin pharmacokinetics in healthy Malay volunteers. A single-dose, randomized, fasting, two-period, two-treatment, two-sequence crossover, open-label bioequivalence study was conducted in 18 healthy Malay adult male volunteers, with one week washout period. The drug concentration in the sample was analyzed using high-performance liquid chromatography (UV-vis HPLC). The mean (standard deviation) pharmacokinetic parameter results of Moxilen® were: peak concentration (Cmax ), 6.72 (1.56) µg/mL; area under the concentration-time graph (AUC0-8 ), 17.79 (4.29) µg/mL h; AUC0-∞ , 18.84 (4.62) µg/mL h. Those of YSP Amoxicillin® capsule were: Cmax , 6.69 (1.44) µg/mL; AUC0-8 , 18.69 (3.78) µg/mL h; AUC00-∞ , 19.95 (3.81) µg/mL h. The 90% confidence intervals for the logarithmic transformed Cmax , AUC0-8 and AUC0-∞ of Moxilen® vs YSP Amoxicillin® capsule was between 0.80 and 1.25. Both Cmax and AUC met the predetermined criteria for assuming bioequivalence. Both formulations were well tolerated. The results showed significant inter-ethnicity variation in pharmacokinetics of amoxicillin. The Cmax and AUC of amoxicillin in Malay population were slightly lower compared with other populations.
    Matched MeSH terms: Therapeutic Equivalency
  15. Liew KB, Loh GO, Tan YT, Peh KK
    Biomed Chromatogr, 2014 Dec;28(12):1782-8.
    PMID: 24788875 DOI: 10.1002/bmc.3221
    A simple, rapid, specific and reliable high-performance liquid chromatographic assay of meloxicam in human plasma has been developed using a C18 reversed-phase analytical column. Reversed-phase chromatography was conducted using a mobile phase of 0.02 potassium dihydrogen phosphate (adjusted to pH 2.7 with phosphoric acid)-acetonitrile-triethylamine (35:65:0.05, v/v) with UV detection at 354 nm. The drug in human plasma was deproteinized using a combination of methanol and chloroform. This method is simple, rapid and consistent with a high recovery of meloxicam in human plasma ranging from 93.29 to 111.09%. Regression analysis for the calibration plot for plasma standards obtained for the drug concentrations between (25-4000) ng/mL indicated excellent linearity (r ≥ 0.9997). The proposed method was applied to study the bioequivalence between Mobic (original) and Melocam (generic) products. The study was conducted on using two tablets (4 × 7.5 mg) of each of the commercial product and the reference standard in a two-way open randomized crossover design involving 20 volunteers. Area under the concentration-time curve, peak concentration (C(max)) and time to reach C(max) were 72,868.61 ng h/mL, 2133.93 ng/mL and 4.06 h for Mobic, and 78,352.52 ng h/mL, 2525.18 ng/mL and 3.61 h for Melocam. Two C(max) were discovered in the pharmacokinetic profiles which confirm enterohepatic recirculation.
    Matched MeSH terms: Therapeutic Equivalency
  16. Loh GOK, Wong EYL, Tan YTF, Wee HC, Ng RS, Lee CY, et al.
    J Pharm Biomed Anal, 2021 Feb 05;194:113758.
    PMID: 33248861 DOI: 10.1016/j.jpba.2020.113758
    A simple, rapid, sensitive, and reproducible LC-MS/MS method was developed for simultaneous quantification of flavoxate and 3-methyl-flavone-8-carboxylic (MFCA) in human plasma, using diphenhydramine HCl as internal standard (IS). The chromatographic separation was achieved using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7 μm) fitted with UHPLC Guard Poroshell 120 EC-C18 (5 × 2.1 mmID, 2.7 μm). The mobile phase consisted of 0.1 % v/v formic acid and acetonitrile (30:70, v/v) run at a flow rate of 0.40 mL/min. The standard calibration curve was linear over the concentration range of 2.00 - 2,000.31 ng/mL and 240.00 - 24,000.04 ng/mL for flavoxate and MFCA. For flavoxate and MFCA, the within-run precision was 0.81-6.67 % and 1.68-4.37 %, while accuracy was 100.21-108.25 % and 103.99-110.28 %. The between-run precision was 2.01-9.14 % and 2.31-11.11 %, and accuracy was 96.09-103.33 % and 102.37-109.52 %. The extended run precision was 7.78-11.04 % and 2.22-3.33 %, while accuracy was 100.72-101.88 % and 102.34-105.60 %. Flavoxate and MFCA in plasma were stable 4 h at bench top (short term), 24 h in autosampler and instrumentation room (post-preparative), after 7 freeze-thaw cycles, and 89 days in the freezer. Both analytes and IS stock solutions were stable for 31 days when kept at room temperature (25 ± 4 °C) and refrigerated (2-8 °C). The validated method was successfully applied to a bioequivalence study of two flavoxate formulations involving 24 healthy volunteers.
    Matched MeSH terms: Therapeutic Equivalency
  17. Wong EYL, Loh GOK, Tan YTF, Peh KK
    Drug Dev Ind Pharm, 2021 Feb;47(2):197-206.
    PMID: 33300818 DOI: 10.1080/03639045.2020.1862177
    OBJECTIVE: The aim of the study was to develop a simple, highthroughput and sensitive LC-MS/MS method and apply to a bioequivalence study of montelukast, a light sensitive drug.

    METHOD: The effects of organic modifiers in mobile phase, protein precipitation agent to plasma sample ratio, and light on montelukast stability in unprocessed and processed human plasma, were evaluated. Validation was conducted in accordance with European Medicines Agency Guideline on bioanalytical method validation.

    RESULTS: No interference peak was observed when acetonitrile was used as an organic modifier. Acetonitrile to plasma ratio of 4:1 produced clean plasma sample. Approximately 3 % of cis isomer was detected in unprocessed plasma samples while 21 % of cis isomer was detected in processed plasma samples after exposing to fluorescent light for 24h. The standard calibration curve was linear over 3.00-1200.00 ng/mL. All method validation parameters were within the acceptance criteria.

    CONCLUSION: The validated method was successfully applied to a bioequivalence study of two montelukast formulations involving 24 healthy Malaysian volunteers. The light stability of a light sensitive drug in unprocessed and processed human plasma samples should be studied prior to pharmacokinetic/bioequivalence studies. Measures could then be taken to protect the analyte in human plasma from light degradation.

    Matched MeSH terms: Therapeutic Equivalency
  18. Loh GOK, Wong EYL, Tan YTF, Wee HC, Ng RS, Syed HK, et al.
    Drug Dev Ind Pharm, 2022 Sep;48(9):470-479.
    PMID: 36111737 DOI: 10.1080/03639045.2022.2125985
    OBJECTIVE: The study aimed to develop a rapid, simple and sensitive LC/ESI-MS/MS method to measure prazosin concentration in human plasma and apply bedside sampling in bioequivalence study of two prazosin tablets to resolve the adverse effect of orthostatic hypotension.

    SIGNIFICANCE: The LC/ESI-MS/MS prazosin method was highly sensitive and selective. Bedside sampling reduced the orthostatic hypotension incidence and subject dropout rate.

    METHODS: After sample preparation, prazosin and terazosin (IS) were detected on mass spectrometer operating in multiple reaction monitoring mode using positive ionization. Mobile phase flow rate was set at 0.40 mL/min with sample run time of 1.75 min. The bioanalytical method was validated as per EMEA and FDA guidelines. Bedside sampling was performed in bioequivalence study for the first 4 h after dosing. The three primary pharmacokinetic parameters, Cmax, AUC0-t and AUC0-∞ and 90% confidence interval were determined.

    RESULTS: The small injection volume of 1 μL minimized instrumentation contamination and prolonged the analytical column lifespan. Linearity was obtained between 0.5 and 30.0 ng/mL, with coefficient of determination, r2 ≥ 0.99. The mean extraction recovery of prazosin and IS was >92%, with precision value (CV, %) ≤ 10.3%. Only two orthostatic hypotension adverse events were reported. The two prazosin formulations were found to be bioequivalent.

    CONCLUSION: The LC/ESI-MS/MS method has shown robustness and reliability exemplified by the incurred sample re-analysis result. Bedside sampling should be proposed for bioequivalence or pharmacokinetic studies of drugs demonstrating adverse event of orthostatic hypotension.

    Matched MeSH terms: Therapeutic Equivalency
  19. Loh GOK, Wong EYL, Tan YTF, Heng SC, Saaid M, Cheah KY, et al.
    Molecules, 2022 Sep 04;27(17).
    PMID: 36080473 DOI: 10.3390/molecules27175706
    Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. A tandem mass spectrometer equipped with an electrospray ionization (ESI) source operated in a positive mode and multiple reaction monitoring (MRM) were used for data collection. The quantitative MRM transition ions were m/z 359.15 > 279.10 and m/z 363.10 > 282.10 for etoricoxib and IS. The linear range was from 10.00 to 4000.39 ng/mL and the validation parameters were within the acceptance limits of the European Medicine Agency (EMA) and Food and Drug Analysis (FDA) guidelines. The present method was sensitive (10.00 ng/mL with S/N > 40), simple, selective (K prime > 2), and fast (short run time of 2 min), with negligible matrix effect and consistent recovery, suitable for high throughput analysis. The method was used to quantitate etoricoxib plasma concentrations in a bioequivalence study of two 120 mg etoricoxib formulations. Incurred sample reanalysis results further supported that the method was robust and reproducible.
    Matched MeSH terms: Therapeutic Equivalency
  20. Loh GOK, Wong EYL, Tan YTF, Lee YL, Pang LH, Chin MC, et al.
    PMID: 32905988 DOI: 10.1016/j.jchromb.2020.122337
    A simple, rapid, sensitive, and reproducible liquid chromatography-tandem mass spectrometry method was developed to determine sitagliptin in human plasma. Diphenhydramine HCl was used as internal standard (IS). The chromatographic separation was achieved using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7) fitted with UHPLC Guard Poroshell 120 EC-C18 (5 × 2.1mmID, 2.7 µm). The mobile phase consisted of 0.1% v/v formic acid and methanol (45:55, v/v) run at a flow rate of 0.45 mL/min at 30 °C. Methanol produced relatively cleaner plasma sample as deproteinization agent. Polytetrafluoroethylene membrane was preferred over nylon membrane as the former produced clear plasma samples. The standard calibration curve was linear over the concentration range of 5-500.03 ng/mL. The within-run precision was 0.53-7.12% and accuracy 87.09-105.05%. The between-run precision was 4.74-11.68% and accuracy 95.02-97.36%. The extended run precision was 3.60-6.88% and accuracy 93.18-95.82%. The recovery of analyte and IS was consistent. Sitagliptin in plasma was stable at benchtop (short term) for 24 h, in autosampler tray for 48 h, in instrumentation room for 48 h (post-preparative), after 7 freeze-thaw cycles (-20 ± 10 °C), and 62 days in the freezer (-20 ± 10 °C). Both sitagliptin (analyte) and IS stock solutions were stable for 62 days when kept at room temperature (25 ± 4 °C) and in chiller (2-8 °C). The validated method was successfully applied to a bioequivalence study of two sitagliptin formulations involving 26 healthy Malaysian volunteers.
    Matched MeSH terms: Therapeutic Equivalency
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links