Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Munisamy S, Kamaliah MD, Suhaidarwani AH, Zahiruddin WM, Rasool AH
    J Cardiovasc Med (Hagerstown), 2013 Jun;14(6):466-71.
    PMID: 22964652 DOI: 10.2459/JCM.0b013e3283590d3d
    AIMS: This study aims to compare microvascular endothelial function between vitamin D-deficient and nondeficient groups of patients with diabetic nephropathy. Serum levels of the inflammatory marker high-sensitivity C-reactive protein (hsCRP) were also measured.

    METHODS: This prospective cross-sectional study involved 70 patients with diabetic nephropathy; 40 were categorized into the group with nondeficient serum 25-hydroxyvitamin D levels [25(OH)D >50 nmol/l], whereas 30 patients were categorized to the group with deficient serum 25(OH)D (<50 nmol/l). Microvascular endothelial function was determined using laser Doppler fluximetry and the process of iontophoresis. Acetylcholine and sodium nitroprusside were used to determine endothelium-dependent and independent vasodilatation.

    RESULTS: Mean age of patients was 56.7 ± 3.8 years; 50 were men, whereas 20 were women. Mean serum 25(OH)D in the vitamin D-nondeficient group was 69.4 ± 2.9 nmol/l; the level in the vitamin D-deficient group was 42.1 ± 1.3 nmol/l, P < 0.001. Endothelium-dependent vasodilatation was lower in the vitamin D-deficient group compared with the vitamin D-nondeficient group (23.6 ± 2.7 versus 37.3 ± 3.8 arbitrary units, P = 0.004). No significant differences were observed between the two groups in their hsCRP levels, mean age, estimated glomerular filtration rate, systolic blood pressure (SBP) and diastolic blood pressure (DBP) and glycosylated haemoglobin.

    CONCLUSION: Microvascular endothelial function was significantly reduced in diabetic nephropathy patients with deficient vitamin D levels compared with those with nondeficient levels.

    Matched MeSH terms: Vasodilation
  2. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Vasodilation/drug effects*
  3. Freestone B, Rajaratnam R, Hussain N, Lip GY
    Int J Cardiol, 2003 Oct;91(2-3):233-8.
    PMID: 14559136
    BACKGROUND: There are established differences in cardiovascular disease in different racial groups. Worldwide, the literature regarding the clinical epidemiology of atrial fibrillation in non-white populations is scarce.

    OBJECTIVES: To document the prevalence of atrial fibrillation (AF) in the multiracial population of Malaysia, and to describe the clinical features and management of these patients.

    SETTING: Busy city centre general hospital in Kuala Lumpur, Malaysia, over a 1-month period.

    SUBJECTS: One-thousand four hundred and thirty-five acute medical admissions, of whom 40 patients (2.8%) had AF.

    RESULTS: Of 1435 acute medical admissions to Kuala Lumpur General Hospital over the 4-week study period, 40 had AF (21 male, 19 female; mean age 65 years). Of these, 18 were Malay, 16 Chinese and six Indian. Nineteen patients had previously known AF (seven with paroxysmal AF) and 21 were newly diagnosed cases. The principal associated medical conditions were ischaemic heart disease (42.5%), hypertension (40%) and heart failure (40%). Dyspnoea was the commonest presentation, whilst stroke was the cause of presentation in only two patients. Investigations were under-utilised, with chest X-ray and echocardiography in only 62.5% of patients and thyroid function checked in 15%. Only 16% of those with previously diagnosed AF were on warfarin, with a further three on aspirin. Anticoagulant therapy was started in 13.5% of patients previously not on warfarin, and aspirin in 8%. Records of contraindications to warfarin were unreliable, being identified in only 25%. For those with known AF, 58% were on digoxin. For new onset AF, digoxin was again the most common rate-limiting treatment, initiated in 38%, whilst five patients with new onset AF were commenced on amiodarone. DC cardioversion was not used in any of the patients with new onset AF.

    CONCLUSION: Amongst acute medical admissions to a single centre in Malaysia the prevalence of AF was 2.8%. Consistent with previous similar surveys in mainly western (caucasian) populations, standard investigations in this Malaysian cohort were also inadequate and there was underuse of anticoagulation, medication for ventricular rate control and cardioversion to sinus rhythm.

    Matched MeSH terms: Vasodilation/physiology
  4. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Vasodilation/drug effects
  5. Cheng CK, Bakar HA, Gollasch M, Huang Y
    Cardiovasc Drugs Ther, 2018 10;32(5):481-502.
    PMID: 30171461 DOI: 10.1007/s10557-018-6820-z
    Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
    Matched MeSH terms: Vasodilation
  6. Rafidah HM, Azizi A, Noriah MN
    Singapore Med J, 2008 Apr;49(4):297-303.
    PMID: 18418521
    It is debatable whether the assessment of low density lipoprotein or total cholesterol (TC) alone is sufficient to identify an individual's risk of having myocardial infarction. In the Framingham study, the risk of coronary artery disease was better indicated by an increase in the TC to high density lipoprotein cholesterol (TC: HDL) ratio. The aim of this study is to determine the relationship between blood pressure variability (BPV) and arterial compliances in hyperlipidaemics, which was defined as TC:HDL of more than 5.0 as compared to normolipidaemics.
    Matched MeSH terms: Vasodilation
  7. Salamt N, Muhajir M, Aminuddin A, Ugusman A
    Bosn J Basic Med Sci, 2020 May 01;20(2):149-156.
    PMID: 31509733 DOI: 10.17305/bjbms.2019.4345
    Numerous studies have evaluated the effects of exercise training on obese children and adolescents. However, the impact of aerobic and/or resistance exercise alone, without any other interventions, on vascular markers and C-reactive protein (CRP) in obese children and adolescents is still not clear. We performed a literature search in Ovid Medline, PubMed, and SCOPUS databases to identify articles on the effects of exercise on vascular markers and CRP among obese children and adolescents, published between January 2009 and May 2019. Only full-text articles in English that reported on the effect of aerobic and/or resistance exercise on the vascular markers pulse wave velocity (PWV), carotid intima-media thickness (CIMT), flow-mediated dilatation (FMD), augmentation index (AIx), or CRP in obese children and adolescents (5-19 years old) were included. The literature search identified 36 relevant articles; 9 articles that fulfilled all the inclusion criteria were selected by two independent reviewers. Aerobic exercise or a combination of aerobic and resistance exercise training significantly improved CIMT and PWV in obese children and adolescents in all studies in which they were measured (2 studies for PWV and 4 studies for CIMT). However, the effects of exercise on FMD and CRP levels were inconclusive, as only half of the studies demonstrated significant improvements (1/2 studies for FMD and 4/8 studies for CRP). The results of our review support the ability of exercise to improve vascular markers such as PWV and CIMT in obese children and adolescents. This finding is important as obesity is a modifiable risk factor of cardiovascular disease (CVD), and exercise may help in reducing the future occurrence of CVD in this population.
    Matched MeSH terms: Vasodilation
  8. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Vasodilation/drug effects
  9. Subramaniam G, Achike FI, Mustafa MR
    Regul. Pept., 2009 Jun 5;155(1-3):70-5.
    PMID: 19362578 DOI: 10.1016/j.regpep.2009.04.008
    The effect of acidosis on insulin-induced relaxation was studied in thoracic aortic rings (from Wistar-Kyoto (WKY) rats) with (+ED) or without (-ED) endothelium. The rings were mounted in normal (pH 7.4) or acidotic (pH 7.2) Krebs solution for isometric tension recording. Phenylephrine (PE, 3.0 microM)-contracted tissues were exposed to insulin in the presence or absence of various inhibitors. Insulin exerted similar concentration-dependent relaxation of +ED tissues in normal and acidotic pH. Endothelium denudation, significantly (p<0.05) reduced insulin effect in normal, but not acidotic pH. Under normal pH, treatment with L-NAME or methylene blue significantly (p<0.05) reduced insulin responses in the +ED (but not the -ED) tissues. The insulin effect was also significantly (p<0.05) inhibited by tetraethylammonium (TEA; BK(Ca) blocker), 4-Aminopyridine (4-AP; K(V) channel blocker), combined treatments (L-NAME+4-AP+TEA, in +ED tissues) or (4-AP+TEA, in -ED tissues). In either +ED or -ED tissues, indomethacin (cyclo-oxygenase inhibitor), glibenclamide (K(ATP) channel blocker), barium chloride (K(ir) channel blocker) or Ouabain (a Na(+)/K(+)-ATPase inhibitor) had no effect. Except for methylene blue (effect on +ED tissues), none of the drug treatments inhibited insulin vasodilator effect in acidosis (+ED or -ED tissues). These data indicate that insulin exerts an endothelium-dependent and -independent vasodilatation in rat aorta which in normal pH is mediated via BK(Ca) and K(v) channels, including the EDNO-cGMP cascade. Acidosis abolishes the endothelium-dependent relaxation mechanism unraveling a novel mechanism that is as efficacious and is cGMP-, but not EDNO-, BK(Ca)- or K(v)-mediated.
    Matched MeSH terms: Vasodilation/drug effects*
  10. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Mohamed AJ, et al.
    J Ethnopharmacol, 2010 Jan 8;127(1):19-25.
    PMID: 19808083 DOI: 10.1016/j.jep.2009.09.057
    The present study was aimed to investigate the pharmacological basis for the use of Loranthus ferrugineus in hypertension.
    Matched MeSH terms: Vasodilation/drug effects
  11. Amudha K, Choy AM, Mustafa MR, Lang CC
    Cardiovasc Ther, 2008;26(4):253-61.
    PMID: 19035876 DOI: 10.1111/j.1755-5922.2008.00064.x
    Endothelial function is impaired in healthy subjects at risk of type 2 diabetes mellitus (DM). We investigated whether endothelial dysfunction can be normalized by statin therapy in this potentially predisposed population. Flow-mediated dilation (FMD) was measured in 56 first-degree relatives (FDRs) (normotensive, normal glucose tolerance) and 20 age-, sex-, and BMI-matched controls with no family history of DM. Other measurements included insulin resistance index using the homeostasis model of insulin resistance (HOMA(IR)), plasma lipids, and markers of inflammation. The FDRs were then randomized and treated with atorvastatin (80 mg) or placebo daily in a 4-week double-blind, placebo-controlled trial. The FDRs had significantly impaired FMD (4.4 +/- 8.1% vs. 13.0 +/- 4.2%; P < 0.001), higher HOMA(IR) (1.72 +/- 1.45 vs. 1.25 +/- 0.43; P = 0.002), and elevated levels of plasma markers of inflammation-highly sensitive C-reactive protein (hsCRP) (2.6 +/- 3.8 mg/L vs. 0.7 +/- 1.0 mg/L; P = 0.06), interleukin (IL)-6 (0.07 +/- 0.13 ng/mL vs. 0.03 +/- 0.01 ng/mL; P < 0.001), and soluble intercellular adhesion molecule (sICAM) (267.7 +/- 30.7 ng/mL vs. 238.2 +/- 20.4 ng/mL; P < 0.001). FMD improved in the atorvastatin-treated subjects when compared with the placebo-treated subjects (atorvastatin, from 3.7 +/- 8.5% to 9.8 +/- 7.3%; placebo, from 3.9 +/- 5.6% to 4.7 +/- 4.2%; P = 0.001). There were also reductions in the levels of IL-6 (0.08 +/- 0.02 ng/mL vs. 0.04 +/- 0.01 ng/mL; P < 0.001) and hsCRP (3.0 +/- 3.9 mg/L vs. 1.0 +/- 1.3 mg/L; P = 0.006). Our study suggests that treatment with atorvastatin may improve endothelial function and decrease levels of inflammatory markers in FDRs of type 2 DM patients.
    Matched MeSH terms: Vasodilation/drug effects*
  12. Nawawi H, Osman NS, Annuar R, Khalid BA, Yusoff K
    Atherosclerosis, 2003 Aug;169(2):283-91.
    PMID: 12921980
    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.
    Matched MeSH terms: Vasodilation/physiology
  13. Azemi AK, Mokhtar SS, Rasool AHG
    Oxid Med Cell Longev, 2020;2020:7572892.
    PMID: 32879653 DOI: 10.1155/2020/7572892
    Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
    Matched MeSH terms: Vasodilation/drug effects
  14. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul. Pharmacol., 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Vasodilation/drug effects
  15. Bello I, Usman NS, Dewa A, Abubakar K, Aminu N, Asmawi MZ, et al.
    J Ethnopharmacol, 2020 Mar 25;250:112461.
    PMID: 31830549 DOI: 10.1016/j.jep.2019.112461
    ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri have a long history of use in the traditional treatment of various ailments including hypertension. Literature reports have indicated that it is a potent antihypertensive herbal medication used traditionally.

    AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.

    MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.

    RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.

    CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.

    Matched MeSH terms: Vasodilation/drug effects
  16. Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z
    Pharm Biol, 2021 Dec;59(1):1203-1215.
    PMID: 34493166 DOI: 10.1080/13880209.2021.1970199
    CONTEXT: Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects.

    OBJECTIVE: This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet.

    MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months.

    RESULTS: In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p 

    Matched MeSH terms: Vasodilation/drug effects
  17. Yam MF, Tan CS, Ahmad M, Ruan S
    Am J Chin Med, 2016;44(7):1413-1439.
    PMID: 27785939
    Orthosiphon stamineus Benth. (Lamiaceae) is an important plant in traditional folk medicine that is used to treat hypertension and kidney stones. In humans, this plant has been tested as an addition regiment for antihypertensive treatment. Among the treatments for hypertension, O. stamineus had been to have diuretic and vasorelaxant effects in animal models. There is still very little information regarding the vasorelaxant effect of O. stamineus. Therefore, the present study was designed to investigate the vasorelaxant activity and mechanism of action of the fractions of O. stamineus. The vasorelaxant activity and the underlying mechanisms of the chloroform fraction of the 50% methanolic extract of O. stamineus (CF) was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. CF caused relaxation of the aortic ring pre-contracted with phenylephrine in the presence and absence of endothelium, and pre-contracted with potassium chloride in endothelium-intact aortic ring. In the presence of endothelium, both indomethacin (a nonselective cyclooxygenase inhibitor) and [Formula: see text]-[1,2,4]Oxadiazolo[4,3-[Formula: see text]]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor) had a small effect on the vasorelaxation response. On the other hand, in the presence of Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), tetraethylammonium ([Formula: see text], nonselective calcium activator [Formula: see text] channel blocker), 4-aminopyridine (4-AP, voltage-dependent [Formula: see text] channel blocker), barium chloride ([Formula: see text], inwardly rectifying [Formula: see text] channel blocker), glibenclamide (nonspecific ATP-sensitive [Formula: see text] channel blocker), atropine (muscarinic receptor blocker) and propranolol (β-adrenergic receptor blocker), the vasorelaxant effect significantly reduced the relaxation stimulated by CF. CF was also found to be active in reducing [Formula: see text] release from the sarcoplasmic reticulum and blocking calcium channels.
    Matched MeSH terms: Vasodilation/drug effects*
  18. Das S, Hamsi MA, Kamisah Y, Qodriyah HMS, Othman F, Emran A, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1609-1615.
    PMID: 29084680
    Consumption of corn oil for cooking purpose is gaining popularity. The present study examined the effect of heated corn oil on blood pressure and its possible mechanism in experimental rats. Thirty male Sprague-Dawley rats were randomly divided into 5 groups and were fed with the following diets, Group I was fed with basal diet only; whereas group II,III,IV and V were fed with basal diet fortified with 15% (w/w) either fresh, once-heated, five-times-heated or ten-times-heated corn oil, respectively for 16 weeks. Body weight, blood pressure were measured at baseline and weekly interval for 16 weeks. Inflammatory biomarkers which included soluble intracellular adhesion molecules (sICAM), soluble vascular adhesion molecules (sVCAM) and C reactive protein (CRP), were measured at baseline and the end of 16 weeks. The rats were sacrificed and thoracic aorta was taken for measurement of vascular reactivity. There was significant increase in the blood pressure in the groups fed with heated once, five-times (5HCO) and ten-times-heated corn oil (10-HCO) compared to the control. The increase in the blood pressure was associated with an increase in CRP, sICAM and sVCAM, reduction in vasodilatation response to acetylcholine and greater vasoconstriction response to phenylephrine. The results suggest that repeatedly heated corn oil causes elevation in blood pressure, vascular inflammation which impairs vascular reactivity thereby predisposing to hypertension. There is a need to educate people not to consume corn oil in a heated state.
    Matched MeSH terms: Vasodilation/drug effects*
  19. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Vasodilation/drug effects*
  20. Wee CL, Mokhtar SS, Singh KKB, Yahaya S, Leung SWS, Rasool AHG
    Oxid Med Cell Longev, 2021;2021:3109294.
    PMID: 33623633 DOI: 10.1155/2021/3109294
    Diabetes mellitus contributes to macro- and microvascular complications, leading to adverse cardiovascular events. This study examined the effects of vitamin D deficiency on the vascular function and tissue oxidative status in the microcirculation of diabetic rats and to determine whether these effects can be reversed with calcitriol (active vitamin D metabolite) supplementation. Streptozotocin-induced diabetic rats were fed for 10 weeks with control diet (DC) or vitamin D-deficient diet without (DD) or with oral calcitriol supplementation (0.15 μg/kg) in the last four weeks (DDS) (10 rats each group). A nondiabetic rat group that received control diet was also included (NR). After 10 weeks, rats were sacrificed; mesenteric arterial rings with and without endothelium were studied using wire myograph. Western blotting of the mesenteric arterial tissue was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) enzyme. Antioxidant enzyme superoxide dismutase (SOD) activity and oxidative stress marker malondialdehyde (MDA) levels in the mesenteric arterial tissue were also measured. The DC group had significantly lower acetylcholine-induced relaxation and augmented endothelium-dependent contraction, with reduced eNOS expression, compared to NR rats. In mesenteric arteries of DD, acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent relaxations were lower than those in DC. Calcitriol supplementation in DDS restored endothelium-dependent relaxation. Mesenteric artery endothelium-dependent contraction of DD was greater than DC; it was not affected by calcitriol supplementation. The eNOS protein expression and SOD activity were significantly lower while MDA levels were greater in DD compared to DC; these effects were not observed in DDS that received calcitriol supplementation. In conclusion, vitamin D deficiency causes eNOS downregulation and oxidative stress, thereby impairing the vascular function and posing an additional risk for microvascular complications in diabetes. Calcitriol supplementation to diabetics with vitamin D deficiency could potentially be useful in the management of or as an adjunct to diabetes-related cardiovascular complications.
    Matched MeSH terms: Vasodilation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links